scholarly journals Performance Improvement of a CPV System: Experimental Investigation into Passive Cooling with Phase Change Materials

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3550
Author(s):  
Shivangi Sharma ◽  
Nazmi Sellami ◽  
Asif A. Tahir ◽  
Tapas K. Mallick ◽  
Rohit Bhakar

High temperature and overheating of photovoltaic panels lead to efficiency losses and eventual degradation. For solar PV systems, this is a significant impediment for achieving economic viability. In this study, a novel Window-Integrated Concentrated Photovoltaic (WICPV) system is proposed for window integration. This offers high (50%) transparency and is fabricated and characterised indoors at an irradiance of 1000 Wm−2. Its electrical performance is tested (a) without applied cooling (i.e., under natural ventilation) and (b) with a heat sink to accommodate passive cooling media. The results are compared to study the effects of reduction in operating temperature on system performances. The effectiveness of a sensible cooling medium (water) and two latent heat removal media, phase change materials (or PCMs, RT50 and RT28HC), is investigated. This paper reports the passive temperature regulation of this WICPV at ambient testing conditions. The results demonstrate an increase in electrical power output by (i) 17% (RT28HC), (ii) 19% (RT50), and (iii) 25 % (circulating water) compared with the naturally ventilated system. This shows that PCMs are considerably useful for thermal regulation of the WICPV. Any improvement in efficiencies will be beneficial for increasing electrical energy generation and reducing peak energy demands.

2020 ◽  
Vol 23 (3) ◽  
pp. 213-220
Author(s):  
R Prakash ◽  
B Meenakshipriya ◽  
S Vijayan ◽  
R Kumaravelan

Thermal and Electrical performance of solar PV/T hybrid water heating system using salt mixture phase change materials in storage tank is analyzed in this study. Compare to all conventional type heaters, the solar PV/T hybrid module collector has ability to produces both electrical energy from PV module and utilizes incident solar energy to heat the water. The sheet and tube type absorber is used to heat up the tube which is attached at the back side of PV module and transfer the heat to flowing water and the electrical energy is tested by connecting the DC load on the PV terminals under glazed and unglazed modes respectively. To enhance the thermal performance, energy storage medium is used as phase change materials at good proportion in the tank. The thermo physical properties of PCM are analyzed by Differential Scanning Calorimetry. This experimental testing is conducted from 8.00 to 17.00 IST in various sunny days and results are compared for glazed and unglazed conditions. The results shows that the average water temperature easily reaches 38-45°C and the final temperature of water never dropped below 34°, the temperature of PCM is 45.6oC, which is 5oC higher than outlet. The amount of heat stored using PCM in tank is 16.86% greater than no-PCM in the tank for constant 0.01 kg/s mass flow rate. The daily average electrical efficiency is 6.4% under glazed mode and 8.8% under unglazed conditions.


Author(s):  
Ali Deriszadeh ◽  
Filippo de Monte ◽  
Marco Villani

Abstract This study investigates the cooling performance of a passive cooling system for electric motor cooling applications. The metal-based phase change materials are used for cooling the motor and preventing its temperature rise. As compared to oil-based phase change materials, these materials have a higher melting point and thermal conductivity. The flow field and transient heat conduction are simulated using the finite volume method. The accuracy of numerical values obtained from the simulation of the phase change materials is validated. The sensitivity of the numerical results to the number of computational elements and time step value is assessed. The main goal of adopting the phase change material based passive cooling system is to maintain the operational motor temperature in the allowed range for applications with high and repetitive peak power demands such as electric vehicles by using phase change materials in cooling channels twisted around the motor. Moreover, this study investigates the effect of the phase change material container arrangement on the cooling performance of the under study cooling system.


2020 ◽  
Vol 12 (19) ◽  
pp. 7846
Author(s):  
Mostafa Ahmed ◽  
Ali Radwan ◽  
Ahmed Serageldin ◽  
Saim Memon ◽  
Takao Katsura ◽  
...  

A zero-energy building (ZEB) requires an innovative integration of technologies, in which windows play a paramount role in energy reduction, storage, and generation. This study contributes to four innovative designs of sliding smart windows. It integrates air-gap (AG), phase change material (PCM), photovoltaic (PV), and vacuum glazing (VG) technologies. These smart sliding windows are proposed to generate electricity along with achieving efficient thermal insulations and heat storage simultaneously. A two-dimensional multiphysics thermal model that couples the PCM melting and solidification model, PV model, natural convection in the cavity, and the surface-to-surface radiation model in the vacuum gap are developed for the first time. The model is validated with data in the literature. The transient simulations were carried out to investigate the thermo-electrical performance of a window with an area of 1 m by 1 m for the meteorological conditions of Kuwait city on the 10th of June 2018, where the window was oriented to south direction. The results showed that the total solar heat energy gain per unit window area is 2.6 kWh, 0.02 kWh, 0.22 kWh, 1.48 kWh, and 0.2 kWh for the double AG, AG + PV + PCM + VG, PV + PCM + VG, AG + PV + PCM, and the ventilated AG + PV + PCM + VG, respectively. The results elucidate the advantages of the integration of VG in this integrated sliding smart window. The daily generated PV electrical energy in these systems is around 1.3 kWh, 1.43 kWh, and 1.38 kWh for the base case with double AG, PV + PCM + VG, and the ventilated AG + PV + PCM + VG respectively per unit window area.


2010 ◽  
Vol 21 (3) ◽  
pp. 2-8 ◽  
Author(s):  
Sosten Ziuku ◽  
Edson L. Meyer

A 3.8 kW rooftop photovoltaic generator has been installed on an energy efficient house built at the University of Fort Hare, Alice campus, South Africa. The system, located on the north facing roof, started generating electrical power in February 2009. In addition to providing electrical energy, the photovoltaic panels also act as the building roofing material. An instrumentation and data acquisition system was installed to record the indoor and outdoor ambient temperature, indoor and outdoor relative humidity, wind speed and direction, solar irradiance, electrical energy produced by the solar panels and the household energy consumption. This paper presents the initial results of the electrical performance of the building integrated photovoltaics (BIPV) generator and energy consumption patterns in the energy efficient house.


1998 ◽  
Vol 120 (3) ◽  
pp. 238-242 ◽  
Author(s):  
A. J. Fossett ◽  
M. T. Maguire ◽  
A. A. Kudirka ◽  
F. E. Mills ◽  
D. A. Brown

Analysis for an avionics application typical of remotely located, intermittently operated avionics on aircraft and missiles show that a large weight reduction (about 9:1) can be obtained by using recently developed microencapsulated phase change materials technology instead of a solid aluminum plate for a passive heat sink. Tests with a configuration based on the typical avionics application used for analysis show good agreement with analysis. Use of microencapsulated rather than bulk phase change materials avoids a number of design problems previously encountered with application of such materials.


2020 ◽  
Author(s):  
Arshmah Hasnain ◽  
Jawad Sarwar ◽  
Qamar Abbas ◽  
Muhammad Azeem Younas ◽  
Konstantinos E. Kakosimos

Abstract In this work, performance analysis of a medium concentrated photovoltaic system employing two mono-facial cells is carried out using a validated finite element based coupled optical, electrical, and thermal model. The environmental conditions of Lahore, Pakistan are considered, and the system is thermally regulated with a phase change material. Nine commercially available phase change materials (PCM) having melting temperature ranges between 41–65°C are selected. These PCMs include LA, RT47, S-series salt, ClimSel™ C48, STL47, RT54, RT60, RT62, and RT64. Temperature regulation, melt fraction, thermal and electrical efficiency are determined for each material for four months of January, March, July, and September representing four seasons of a year. The comparison of the materials has shown that S-series salt and C48 melt completely during the day and regenerate to solid-phase during night in the whole year except January. But S-series salt is found to be most suitable in current configuration due to its higher overall efficiency over the whole year.


Sign in / Sign up

Export Citation Format

Share Document