scholarly journals Analysis of Energy Use and Energy Savings: A Case Study of a Condiment Industry in India

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4798
Author(s):  
Khan Rahmat Ullah ◽  
Marudhappan Thirugnanasambandam ◽  
Rahman Saidur ◽  
Kazi Akikur Rahman ◽  
Md. Riaz Kayser

Electric motors and boilers lead the industrial components which consume the largest portion of energy in an industry. This study explores the energy audit data of the condiment industry in India. The study mainly focuses on the estimation of the load factor, energy use, energy savings and annual bill savings with payback period of the electric motors of the plant. During the audit, it was found that there were several motors running under loaded conditions despite non-availability of variable speed drives installed in the plant. Therefore, variable speed drives are recommended to be installed to save energy by reducing the motors speed by up to 60%. According to the estimation, about 276 MWh, 551 MWh and 827 MWh electrical energy can be saved for 20%, 40% and 60% speed reduction of the motors using variable speed drives, respectively, where in most of the cases the payback period remains below 1 year. Furthermore, some suggestions are made to improve the poor power factor of running motors by using capacitor banks to save the reactive power. Besides, an estimation of energy saving is performed with a 2-ton capacity boiler. Since, there was no heat recovery system in the boiler; an air-preheater is suggested to be installed at the end of flue gas exhausting path of the boiler with the purpose of saving 68 tons of fuel per annum and having a payback period of 12 months. Moreover, a digital monitoring system, namely, “The Smart Joules” has been proposed to be installed in the plant aiming at saving about 3–5% of total energy per annum and having a payback period of 19 months. Finally, a summarization is made concluding in the fact that about 90 MWh energy and 95 tons of fuel can be saved (excluding motor energy savings) per annum by implementing proposed measures with a payback period of 15 months.

2011 ◽  
Vol 15 (3) ◽  
pp. 705-719 ◽  
Author(s):  
R. Saidur

In this paper energy use of boiler fan motors has been estimated using energy audit data. Energy savings using VSD by modulating fan speed has been estimated as well. Bill savings and associated emission reductions using VSD have been estimated and presented in this paper. It has been found that 139,412 MWh, 268,866, 159,328 MWh, and 99,580 MWh electrical energy can be saved for 40%, 60%, 80% and 100% motor loadings, respectively for 60% speed reduction. Corresponding bill savings for the aforementioned energy savings have been found to be US$7,318,335, US$14,113,933, US$8,363,812, and US135,911,944 for 40%, 60%, 80% and 100% motor loadings, respectively for 60% speed reduction. Along with energy savings, 69,770,744 kg, 134,558,329 kg, 79,738,065 kg, 49,836,603 kg of CO2 emission can be avoided for the associated energy savings as a result of energy savings using VSD for 40%, 60%, 80% and 100% motor loadings. Moreover, 32,503,558 GJ of fossil fuel can be saved for the flue gas temperature reduction as a result of reducing fan motor speed reduction. Flue gas energy savings for oxegen trim system has been estimated and found to be 549,310,130 GJ for 16.9% of excess air reduction with payback period less than a day.


Author(s):  
ALPER GONEN

Energy is a basic need for industries around the world. In recent years, electrical power costs have risen considerably and this rise is likely to continue in the future. Meanwhile, the increasing cost of ventilating mines safely and efficiently is of vital importance. Ventilation on demand has the potential to optimize electrical consumption while maintaining the safety of mines. This paper investigates the energy efficiency enhancement through ventilation on demand in underground mines by installing variable speed drives on the auxiliary mine ventilation fans to provide variable airflow control. Variable speed drives are cost effective and manageable and require low maintenance. It has been estimated that a total electrical energy saving of 324,300 kW, or 53%, can be achieved in 1 year by using variable speed drives. Therefore, it is possible to reduce CO2 emissions by 155.6 tons per year with a simple payback period of 5 months 220 days.


Author(s):  
Sergei, Rybel’ ◽  
V. Kuninin ◽  
S. Gerasimov ◽  
A. Bakushin

Приведен опыт применения частотно-регулируемых электроприводов на насосных станциях ООО Водоканал г. Новокузнецка. Приводятся преимущества и недостатки данного технического устройства. Показано, что в настоящее время использование частотно-регулируемых приводов позволило снизить потребление электроэнергии более чем на 20, уменьшить затраты на ремонт и обслуживание, повысить срок службы электродвигателей, уменьшить величину пускового тока, снизить утечки воды и нагрузку на насосное оборудование и трубопроводную арматуру. Применение частотно-регулируемых электроприводов оправдало себя и в тех случаях, когда требуется регулирование параметров для обеспечения технологии (регулирование скорости, производительности и т. д.), приведение параметров оборудования к требуемым значениям без его замены (в расчете на увеличение загрузки оборудования до номинала в последующий период), компенсация суточной неравномерности потребления воды.The experience of using variable speed drives at the pumping stations operated by Vodokanal LLC in Novokuznetsk is presented. The advantages and disadvantages of this technical device are specified. It is demonstrated that currently, the use of variable speed drives provides for reducing the energy consumption by more than 20, reducing the repair and maintenance costs for improving the service life of electric motors for reducing inrush current, water leaks and the load on the pumping equipment and pipeline valving. The use of variable speed drives has paid off even in case where adjusting the parameters to ensure the technology (velocity, performance, etc.) bringing the equipment parameters to the required values without replacing it (in order to increase the equipment load to the nominal value for the subsequent period) compensating for daily irregularities in water consumption are required.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2530 ◽  
Author(s):  
Luigi Cimorelli ◽  
Carmine Covelli ◽  
Bruno Molino ◽  
Domenico Pianese

Greenhouse gas emission is one of the main environmental issues of today, and energy savings in all industries contribute to reducing energy demand, implying, in turn, less carbon emissions into the atmosphere. In this framework, water pumping systems are one of the most energy-consuming activities. The optimal regulation of pumping systems with the use of variable speed drives is gaining the attention of designers and managing authorities. However, optimal management and operation of pumping systems is often performed, employing variable speed drives without considering if the energy savings are enough to justify their purchasing and installation costs. In this paper, the authors compare two optimal pump scheduling techniques, optimal regulation of constant speed pumps by an optimal ON/OFF sequence and optimal regulation with a variable speed pump. Much of the attention is devoted to the analysis of the costs involved in a hypothetical managing authority for the water distribution system in order to determine whether the savings in operating costs is enough to justify the employment of variable speed drives.


Author(s):  
E. I. Gracheva ◽  
A. N. Gorlov ◽  
Z. M. Shakurova

The article examines the main features of the layout of electrical equipment for shop networks of internal power supply with the definition of indicators for a group of shop customers connected to a single power center, affecting the choice of the structure of schemes for shop network sites. The parameters characterizing the circuit topology are revealed. A study is presented of the influence of the load factor of workshop transformers on their reactive power factor, it is proved by calculation by technical and economic criteria the feasibility of replacing a workshop transformer with two with a lower total power. The calculation of energy savings in the in-plant power supply systems. The type of dependences tgφ of transformers ТМ and ТСЗ with various rated powers in the function of loading transformers is established. The most significant factors of the growth of idle power losses during operation are presented. With determination of losses of active and reactive power and electricity in transformers and losses of active power in a high voltage distribution network A feasibility study was carried out on the options for internal power supply schemes with two transformers of lower power installed instead of one, and the feasibility of such a replacement to increase the efficiency of the equipment was proved and the estimated payback period for the investment capital was determined. A comparative analysis of the studied power supply schemes of industrial enterprises with the identification of their advantages and disadvantages.


Author(s):  
Harold T. Snyder

The 3 C’s Cash - Control - and Coordination based on the use of variable speed drives in the Citrus Industry is covered in this paper. Proper use of variable speed drives results in more money (CASH) from Energy Savings, Reduced Maintenance cost, and Improved Efficiencies. By regulating the speed of pumps and conveyor belts, less problems from mismatched speeds occur (CONTROL). The timing of the material reaching the correct location through proper speeds of equipment means improved COORDINATION. The various types of variable speed drives and their manufacturers are discussed. The type of drives covered range from simple eddy current, with minimum control features, to electronic AC and DC drives with unlimited control functions. Paper published with permission.


Solar Energy ◽  
2005 ◽  
Author(s):  
Abdelkarim Nemri ◽  
Moncef Krarti

This paper provides a simplified analysis tool to assess the energy saving potential of daylighting for commercial buildings through skylights. Specifically, the impact of daylighting is investigated for various fenestration opening sizes, glazing types, control strategies, and geographic locations. A top floor of a prototypical office building has been considered in the analysis. The results obtained for the office building can be applied to other types of buildings such as retails stores, schools, and warehouses. Based on the simulation analysis results, it was determined that skylight to floor ratio more than 0.3 does not affect significantly the lighting energy savings. An optimum value of skylight to floor area ratio was found to be 0.2 to minimize the annual total building energy use.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1402
Author(s):  
Kristoffer Ekberg ◽  
Lars Eriksson ◽  
Christofer Sundström

A combustion engine-driven vehicle can be made more fuel efficient over some drive cycles by, for example, introducing electric machines and solutions for electrical energy storage within the vehicle’s driveline architecture. The possible benefits of different hybridization concepts depend on the architecture, i.e., the type of energy storage, and the placement and sizing of the different driveline components. This paper examines a diesel electric plug-in hybrid truck, where the powertrain includes a diesel engine supported with two electric motors, one supporting the crank shaft and one the turbocharger. Numerical optimal control was used to find energy-optimal control strategies during two different accelerations; the trade-off between using electrical energy and diesel fuel was evaluated using a simulation platform. Fixed-gear acceleration was performed to evaluate the contribution from the two electric motors in co-operation, and individual operation. A second acceleration test case from 8 to 80 km/h was performed to evaluate the resulting optimal control behavior when taking gear changes into account. A cost factor was used to relate the cost of diesel fuel to electrical energy. The selection of the cost factor relates to the allowed usage of electrical energy: a high cost factor results in a high amplification from electrical energy input to total system energy savings, whereas a low cost factor results in an increased usage of electrical energy for propulsion. The difference between fixed-gear and full acceleration is mainly the utilization of the electric crank shaft motor. For the mid-range of the cost factors examined, the crank shaft electric motor is used at the end of the fixed-gear acceleration, but the control sequence is not repeated for each gear during the full acceleration. The electric motor supporting the turbocharger is used for higher cost factors than the crank shaft motor, and the amplification from electrical energy input to total energy savings is also the highest.


2015 ◽  
Vol 30 (4) ◽  
pp. 1288-1298
Author(s):  
Chien-Hsing Lee ◽  
Zhi-Wei Liu ◽  
Chien-Nan Chen ◽  
Ming-Yuan Cho ◽  
Foung-Tang Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document