scholarly journals Standard and Modified SST Models with the Consideration of the Streamline Curvature for Separated Flow Calculation in a Narrow Channel with a Conical Dimple on the Heated Wall

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5038
Author(s):  
Sergey Isaev ◽  
Dmitry Nikushchenko ◽  
Alexandr Sudakov ◽  
Nikita Tryaskin ◽  
Ann Egorova ◽  
...  

The testing of the standard and modified SST models of the transfer of shear stresses was carried out on an example of calculating the heat transfer with an intense detached flow around a conical dimple with a slope angle of 45° on the heated wall of a narrow channel. It was shown that the standard turbulence model by Menter SST (MSST) of 2003, widely used in the packages Fluent, CFX, StarCCM+, etc., significantly underestimated the intensity of the return flow. A correction of this model was presented that took into account the influence of the curvature of streamlines within the framework of the Rodi-Leshziner-Isaev (RLI) approach for spatial separated flows. It was found that the predictions for the RLI MSST 2003 were close to the predictions for the original standard MSST 1993, in which the eddy viscosity was calculated using the vorticity modulus. At the same time, the predictions based on the modified one, following Smirnov-Menter (SM) MSST 2003, included in the ANSYS model catalog did not differ too much from the standard MSST 2003. The preference of the MSST modified within the RLI 2003 for calculating the heat transfer in intense separated flows was substantiated.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1005
Author(s):  
Viktor I. Terekhov

The study of flows with a high degree of turbulence in boundary layers, near-wall jets, gas curtains, separated flows behind various obstacles, as well as during combustion is of great importance for increasing energy efficiency of the flow around various elements in the ducts of gas-dynamic installations. This paper gives some general characteristics of experimental work on the study of friction and heat transfer on a smooth surface, in near-wall jets, and gas curtains under conditions of increased free-stream turbulence. Taking into account the significant effect of high external turbulence on dynamics and heat transfer of separated flows, a similar effect on the flow behind various obstacles is analyzed. First of all, the classical cases of flow separation behind a single backward-facing step and a rib are considered. Then, more complex cases of the flow around a rib oriented at different angles to the flow are analyzed, as well as a system of ribs and a transverse trench with straight and inclined walls in a turbulent flow around them. The features of separated flow in a turbulized stream around a cylinder, leading to an increase in the width of the vortex wake, frequency of vortex separation, and increase in the average heat transfer coefficient are analyzed. The experimental results of the author are compared with data of other researchers. The structure of separated flow at high turbulence—characteristic dimensions of the separation region, parameters of the mixing layer, and pressure distribution—are compared with the conditions of low-turbulent flow. Much attention is paid to thermal characteristics: temperature profiles across the shear layer, temperature distributions over the surface, and local and average heat transfer coefficients. It is shown that external turbulence has a much stronger effect on the separated flow than on the boundary layer on a flat surface. For separated flows, its intensifying effect on heat transfer is more pronounced behind a rib than behind a step. The factor of heat transfer intensification by external turbulence is most pronounced in the transverse cavity and in the system of ribs.


Author(s):  
Arif B. Ozer ◽  
Donald K. Hollingsworth ◽  
Larry. C. Witte

A quenching/diffusion analytical model has been developed for predicting the wall temperature and wall heat flux behind bubbles sliding in a confined narrow channel. The model is based on the concept of a well-mixed liquid region that enhances the heat transfer near the heated wall behind the bubble. Heat transfer in the liquid is treated as a one-dimensional transient conduction process until the flow field recovers back to its undisturbed level prior to bubble passage. The model is compared to experimental heat transfer results obtained in a high-aspect-ratio (1.2×23mm) rectangular, horizontal channel with one wide wall forming a uniform-heat-generation boundary and the other designed for optical access to the flow field. The working fluid was Novec™ 649. A thermochromic liquid crystal coating was applied to the outside of the uniform-heat-generation boundary, so that wall temperature variations could be obtained and heat transfer coefficients and Nusselt numbers could be obtained. The experiments were focused on high inlet subcooling, typically 15–50°C. The model is able to capture the elevated heat transfer rates measured in the channel without the need to consider nucleate boiling from the surface or microlayer evaporation from the sliding bubbles. Surface temperatures and wall heat fluxes were estimated for 17 different experimental conditions using the proposed model. Results agreed with the measured values within ±15% accuracy. The insight gathered from comparing the results of the proposed model to experimental results provides the basis for a better understanding of the physics of subcooled bubbly flow in narrow channels.


1971 ◽  
Vol 93 (4) ◽  
pp. 342-348 ◽  
Author(s):  
John W. Mitchell

An experimental investigation of the heat transfer from the base of a two-dimensional wedge-shaped body to the separated-flow region was conducted in a low-speed wind tunnel. The Stanton number has been determined as a function of Reynolds number for two geometries that are representative of heat-exchanger surfaces. The heat transfer is found to be comparable in magnitude to that for attached flows. An analysis based on the mechanisms of vortex shedding and boundary-layer behavior is developed. The analysis agrees fairly well with the data and indicates the parameters governing base heat transfer.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012018
Author(s):  
S A Isaev ◽  
A I Leontiev ◽  
E E Son ◽  
S V Guvernyuk ◽  
M A Zubin ◽  
...  

Abstract At the stands of Research Institute of Mechanics at the Moscow State University, we experimentally confirmed the mechanism of anomalous intensification of the separation flow and heat exchange in inclined oval-trench dimples (OTD) on the plate, which was discovered during numerical studies. The measured static pressure differences in single OTD at Re=6.7×104 are in good agreement with the numerical forecasts within the framework of the RANS approach at Re=104.


Author(s):  
Marc C. Goldbach ◽  
Mesbah Uddin

While Reynolds-averaged simulatons (RAS) have found success in the evaluation of many canonical shear flows, and moderately separated flows, their application to highly separated flows have shown notable deficiencies. This study aims to investigate these deficiencies in the eddy-viscosity formulation of four commonly used turbulence models under separated flow in an attempt to aid in the improved formulation of such models. Analyses are performed on the flow field around a wall mounted cube at a Reynolds number of 40,000 based on the cube height, h, and free stream velocity, U0. While a common occurrence in industrial applications, this type of flow constitutes a complex structure exhibiting a large separated wake region, high anisotropy, and multiple vortex structures. As well, interactions between vortices developed off of different faces of the cube significantly alter the overall flow characteristics, posing a significant challenge for the commonly used industrial turbulence models. Comparison of mean flow characteristics show remarkable agreement between experimental values and turbulence models which are capable of predicting transitional flow. Evaluation of turbulence parameters show the general underestimation of Reynolds stress for transitional models, while fully turbulent models show this value to be overestimated, resulting in completely disparate representations of mean flow structures between the two classes of models (transitional and fully turbulent).


1967 ◽  
Vol 27 (1) ◽  
pp. 97-109 ◽  
Author(s):  
D. B. Spalding

A power-law relation is derived between the Stanton number and the Reynolds number, expressing the law of heat transfer for a wall adjacent to a region of turbulent separated flow. The derivation is based on Prandtl's (1945) proposal for the laws of dissipation, diffusion and generation of turbulent kinetic energy. The constants appearing in these laws are determined by reference to experimental data for the hydrodynamic properties of the constant-stress and the linear-stress layers.The agreement between the resulting predictions and the experimental data of other workers is sufficiently good to suggest that the actual mechanism of heat transfer from separated flows has much in common with that which is postulated. Closer agreement can be expected only after the present one-dimensional analysis has been superseded by a two-dimensional one.


1991 ◽  
Vol 113 (4) ◽  
pp. 912-918 ◽  
Author(s):  
D. M. Sefcik ◽  
B. W. Webb ◽  
H. S. Heaton

Steady, laminar natural convection in vertically vented two-dimensional enclosures has been investigated both experimentally and analytically. A vertically vented enclosure is one in which the buoyancy-driven flow and heat transfer are restricted by vents in the top and bottom bounding walls of the enclosure. The local heat transfer along the heated wall was determined using Mach-Zehnder interferometry, and the flow structure was determined using a smoke generation flow visualization technique. Analytically, the governing conservation equations were solved numerically using a control volume-based finite difference technique. The results reveal strongly nonuniform local heat transfer along the isothermal wall as a result of the blockage at the inlet. A local maximum and minimum occur in the lower half of the enclosure. The flow visualization and analytical predictions for the flow field reveal that these heat transfer extrema are attributed to separated flow effects near the inlet gap with the associated primary inlet flow impingement and bifurcation at the heated wall. The analysis predicts well the flow structure and local and average heat transfer data. The results show asymptotic behavior to the classical vertical parallel plate result in the limit as the vent gap approaches the enclosure width.


Author(s):  
Weihong Li ◽  
Li Yang ◽  
Jing Ren ◽  
Hongde Jiang

A new algebraic anisotropic eddy viscosity model (AEVM) is developed to account for the anisotropic characteristics of flow fields for internal cooling channels in a gas turbine. The model consist of two parts: k and ε near wall modeling are improved to obtain precise near wall turbulent characteristics and eddy viscosity; anisotropic ratios are derived to account for anisotropy and further modify the normal Reynolds stresses by combining implicit algebraic stress model and isotropic eddy viscosity model. The new algebraic anisotropic eddy viscosity model is validated in two cases: 1) flow prediction of backward facing step, better results are obtained especially turbulent quantities, 2) flow and heat transfer predictions of internal channels with ribs, numerical reattachment length after each rib is more close to the measured value after anisotropic modification, and heat transfer prediction accuracy is increased by 6–10%. Results indicate the present model can be applied to flow and heat transfer prediction of separated flows in internal cooling channels efficiently.


1980 ◽  
Vol 102 (2) ◽  
pp. 351-356 ◽  
Author(s):  
J. P. Lamb

Correlations are developed for minimum heat transfer levels within the separated flow fields formed by a variety of planar geometries including backsteps, open cavities, and cylinders of arbitrary cross section. Proposed correlations include the independent effects of Mach number, unit Reynolds number, and the length scale of the separated region. Both laminar and turbulent regimes are considered.


Sign in / Sign up

Export Citation Format

Share Document