scholarly journals Empirical Correlations between the Hydraulic Properties Obtained from the Geoelectrical Methods and Water Well Data of Arak Aquifer

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5415
Author(s):  
Mitra Khalilidermani ◽  
Dariusz Knez ◽  
Mohammad Ahmad Mahmoudi Zamani

A number of empirical correlations have been achieved between the hydraulic properties measured through geoelectrical methods and water well data of Arak Aquifer located in Markazi province, Iran. The geoelectrical method of Vertical Electrical Sounding (VES) technique was used to calculate the hydraulic properties of the aquifer. Through the VES technique, the pivotal hydraulic properties such as porosity, hydraulic conductivity, and specific yield of the layers were calculated. The results of VES technique were compared with the data obtained from seven observation water wells that were already drilled as exploratory coring boreholes in the region. The results demonstrate that as the porosity and hydraulic conductivity of the water-bearing layer increase, the results of VES technique appear much identical to the water well records. Furthermore, the specific yield was calculated as 4.6% that was very close to the value of 3.5% measured through the previous pumping tests. Moreover, VES technique predicted the water table of the aquifer very close to the water level monitored in the observation water wells. The obtained correlations can be used as an alternative for drilling of new observation wells that are inefficient in time and expense, and may encounter environmental limitations of drilling and site construction.

1985 ◽  
Vol 22 (12) ◽  
pp. 1803-1812 ◽  
Author(s):  
E. Zaltsberg

The Wilson Creek experimental basin is located on the slope of the Manitoba Escarpment, southwestern Manitoba. Observations of groundwater regime, weather conditions, and stream discharge were carried out in this basin from 1965 to 1980. Using groundwater fluctuations in observation wells, it was found that the values of the specific yield of till range from 0.03 to 0.04 and the specific yield of shale is equal to 0.04. Calculated vertical hydraulic conductivity of till ranges from 2 × 10−4 to 3 × 10−4 m/day.On the basis of these determinations, groundwater balances for separate segments of the watershed and for the whole of the basin were calculated. Considering the basin as a whole, it was found that the average values of groundwater-balance components during spring–summer seasons were as follows: infiltration, 111 mm or 30% of precipitation; evaporation, 58 mm or 19% of precipitation; and groundwater runoff, 61 mm or 20% of precipitation.


Author(s):  
Guglielmo Federico Antonio Brunetti ◽  
Samuele De Bartolo ◽  
Carmine Fallico ◽  
Ferdinando Frega ◽  
Maria Fernanda Rivera Velásquez ◽  
...  

AbstractThe spatial variability of the aquifers' hydraulic properties can be satisfactorily described by means of scaling laws. The latter enable one to relate the small (typically laboratory) scale to the larger (typically formation/regional) ones, therefore leading de facto to an upscaling procedure. In the present study, we are concerned with the spatial variability of the hydraulic conductivity K into a strongly heterogeneous porous formation. A strategy, allowing one to identify correctly the single/multiple scaling of K, is applied for the first time to a large caisson, where the medium was packed. In particular, we show how to identify the various scaling ranges with special emphasis on the determination of the related cut-off limits. Finally, we illustrate how the heterogeneity enhances with the increasing scale of observation, by identifying the proper law accounting for the transition from the laboratory to the field scale. Results of the present study are of paramount utility for the proper design of pumping tests in formations where the degree of spatial variability of the hydraulic conductivity does not allow regarding them as “weakly heterogeneous”, as well as for the study of dispersion mechanisms.


2021 ◽  
Author(s):  
Michael Bitterlich ◽  
Richard Pauwels

<p>Hydraulic properties of mycorrhizal soils have rarely been reported and difficulties in directly assigning potential effects to hyphae of arbuscular mycorrhizal fungi (AMF) arise from other consequences of AMF being present, i.e. their influence on growth and water consumption rates of their host plants that both also influence soil hydraulic properties.</p><p>We assumed that the typical nylon meshes used for root-exclusion experiments in mycorrhizal research can provide a dynamic hydraulic barrier. It is expected that the uniform pore size of the rigid meshes causes a sudden hydraulic decoupling of the enmeshed inner volume from the surrounding soil as soon as the mesh pores become air-filled. Growing plants below the soil moisture threshold for hydraulic decoupling would minimize plant-size effects on root-exclusion compartments and allow for a more direct assignment of hyphal presence to modulations in soil hydraulic properties.</p><p>We carried out water retention and hydraulic conductivity measurements with two tensiometers introduced in two different heights in a cylindrical compartment (250 cm³) containing a loamy sand, either with or without the introduction of a 20 µm nylon mesh equidistantly between the tensiometers. Introduction of a mesh reduced hydraulic conductivity across the soil volumes by two orders of magnitude from 471 to 6 µm d<sup>-1</sup> at 20% volumetric water content.</p><p>We grew maize plants inoculated or not with Rhizophagus irregularis in the same soil in pots that contained root-exclusion compartments while maintaining 20% volumetric water content. When hyphae were present in the compartments, water potential and unsaturated hydraulic conductivity increased for a given water content compared to compartments free of hyphae. These differences increased with progressive soil drying.</p><p>We conclude that water extractability from soils distant to roots can be facilitated under dry conditions when AMF hyphae are present.</p><p> </p>


2014 ◽  
Vol 38 (4) ◽  
pp. 1281-1292 ◽  
Author(s):  
Luis Alberto Lozano ◽  
Carlos Germán Soracco ◽  
Vicente S. Buda ◽  
Guillermo O. Sarli ◽  
Roberto Raúl Filgueira

The area under the no-tillage system (NT) has been increasing over the last few years. Some authors indicate that stabilization of soil physical properties is reached after some years under NT while other authors debate this. The objective of this study was to determine the effect of the last crop in the rotation sequence (1st year: maize, 2nd year: soybean, 3rd year: wheat/soybean) on soil pore configuration and hydraulic properties in two different soils (site 1: loam, site 2: sandy loam) from the Argentinean Pampas region under long-term NT treatments in order to determine if stabilization of soil physical properties is reached apart from a specific time in the crop sequence. In addition, we compared two procedures for evaluating water-conducting macroporosities, and evaluated the efficiency of the pedotransfer function ROSETTA in estimating the parameters of the van Genuchten-Mualem (VGM) model in these soils. Soil pore configuration and hydraulic properties were not stable and changed according to the crop sequence and the last crop grown in both sites. For both sites, saturated hydraulic conductivity, K0, water-conducting macroporosity, εma, and flow-weighted mean pore radius, R0ma, increased from the 1st to the 2nd year of the crop sequence, and this was attributed to the creation of water-conducting macropores by the maize roots. The VGM model adequately described the water retention curve (WRC) for these soils, but not the hydraulic conductivity (K) vs tension (h) curve. The ROSETTA function failed in the estimation of these parameters. In summary, mean values of K0 ranged from 0.74 to 3.88 cm h-1. In studies on NT effects on soil physical properties, the crop effect must be considered.


2013 ◽  
Vol 11 (4) ◽  
pp. 556-565

Drainage management problems are usually very hard to simulate due to the uncertainty of the hydraulic parameters involved. Fuzzy analysis is one of the available tools that can be used for such problems, involving uncertain data. A fuzzy analysis approach usually involves the consideration of several α-level cuts and an analytical approach or an explicit scheme approach for the PDE's discretization. Several application examples of this approach are listed in the literature, including uncertainty in hydraulic conductivity, specific yield, transmissivities, porosities, dispersivities, and deoxygenation rate coefficient. A methodology for the simulation of drainage problem having vague values of hydraulic parameters is introduced in this paper, and an analytical solution for a two-dimensional drainage application is presented. The two-dimensional problem of drainage is handled using fuzzy analysis by defining the hydraulic conductivity K as a triangular fuzzy number (TFN). The method of interval analysis is used in all the α-level cut examples. A solution is obtained using eleven α-level cuts and also solutions for two, three, and five α-level cuts are presented. Trials for different values of effective porosity are also performed. Finally conclusions on the necessary number of α-cuts utilized for drainage problems are drawn.


Author(s):  
Shaoyang Dong ◽  
Yuan Guo ◽  
Xiong (Bill) Yu

Hydraulic conductivity and soil-water retention are two critical soil properties describing the fluid flow in unsaturated soils. Existing experimental procedures tend to be time consuming and labor intensive. This paper describes a heuristic approach that combines a limited number of experimental measurements with a computational model with random finite element to significantly accelerate the process. A microstructure-based model is established to describe unsaturated soils with distribution of phases based on their respective volumetric contents. The model is converted into a finite element model, in which the intrinsic hydraulic properties of each phase (soil particle, water, and air) are applied based on the microscopic structures. The bulk hydraulic properties are then determined based on discharge rate using Darcy’s law. The intrinsic permeability of each phase of soil is first calibrated from soil measured under dry and saturated conditions, which is then used to predict the hydraulic conductivities at different extents of saturation. The results match the experimental data closely. Mualem’s equation is applied to fit the pore size parameter based on the hydraulic conductivity. From these, the soil-water characteristic curve is predicted from van Genuchten’s equation. The simulation results are compared with the experimental results from documented studies, and excellent agreements were observed. Overall, this study provides a new modeling-based approach to predict the hydraulic conductivity function and soil-water characteristic curve of unsaturated soils based on measurement at complete dry or completely saturated conditions. An efficient way to measure these critical unsaturated soil properties will be of benefit in introducing unsaturated soil mechanics into engineering practice.


Agriculture ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 133 ◽  
Author(s):  
Dinushika Wanniarachchi ◽  
Mumtaz Cheema ◽  
Raymond Thomas ◽  
Vanessa Kavanagh ◽  
Lakshman Galagedara

Hydraulic properties of soil are the basis for understanding the flow and transport through the vadose zone. It has been demonstrated that different soil amendments can alter the soil properties affecting soil hydrology. The aim of this study was to determine the effect of soil amendments on hydraulic conductivity (K) of a loamy sand podzolic soil under both unsaturated (Kunsat) and near-saturated (near Ksat) conditions in an agricultural setting. A field experiment was conducted with two common soil amendments: Dairy manure (DM) in 2016 and 2017 and biochar (BC) once only in 2016. DM and BC were incorporated up to a depth of 0.15–0.20 m at a rate of 30,000 L ha−1 and 20 Mg ha−1, respectively. A randomized complete block experimental design was used and the plots planted with silage corn (Zea mays L.) without irrigation. The treatments were: Control without amendment (0N), inorganic N fertilizer (IN), two types of DM (IN+DM1 and IN+DM2), and two treatments with BC (IN+BC and IN+DM1+BC). Infiltration data were collected using a mini disk infiltrometer under three tension levels in which −0.04 and −0.02 m was ascribed as unsaturated (at the wet end) and −0.001 m as near-saturated condition. Based on the measured infiltration rates, Kunsat and near Ksat hydraulic conductivities were calculated. There were no significant effects of DM and BC on bulk density and near Ksat. Treatments IN+DM1, IN+DM2, and IN+DM1+BC significantly reduced the Kunsat compared to the control. Since these soil amendments can influence soil hydrology such as reduced infiltration and increased surface runoff, carefully monitored application of soil amendments is recommended.


2015 ◽  
Vol 42 (7) ◽  
pp. 668 ◽  
Author(s):  
Thibault Nordey ◽  
Mathieu Léchaudel ◽  
Michel Génard

The decline in xylem flow during the late growth stage in most fruits may be due either to a decrease in the water potential gradient between the stem bearing the fruit and the fruit tissues or to a decrease in the hydraulic conductivity of xylem vessels, or both. In this study, we analysed changes in xylem flows to the mango Mangifera indica L. fruit during its development to identify the sources of variation by measuring changes in the water potential gradient and in the hydraulic properties of the fruit pedicel. The variations in xylem and transpiration flows were estimated at several stages of mango fruit development from the daily changes in the fresh mass of detached and girdled fruits on branches. The water potential gradient was estimated by monitoring the diurnal water potential in the stem and fruit. The hydraulic properties of the fruit pedicel were estimated using a flow meter. The results indicated that xylem flow increased in the early stages of fruit development and decreased in the late stage. Variations in xylem flow were related to the decrease in the hydraulic conductivity of xylem vessels but not to a decrease in the water potential gradient. The hydraulic conductivity of the fruit pedicel decreased during late growth due to embolism caused by a decrease in the fruit water potential. Further studies should establish the impact of the decrease in the hydraulic conductivity of the fruit pedicel on mango growth.


Soil Research ◽  
1992 ◽  
Vol 30 (3) ◽  
pp. 265 ◽  
Author(s):  
HP Cresswell ◽  
DE Smiles ◽  
J Williams

We review the influence of soil structural change on the fundamental soil hydraulic properties (unsaturated hydraulic conductivity and the soil moisture characteristic) and utilize deterministic modelling to assess subsequent effects on the soil water balance. Soil structure is reflected in the 0 to -100 kPa matric potential section of the soil moisture characteristic with marked changes often occurring in light to medium textured soils' (sands, sandy-loam, loams and clay-loams). The effect of long-term tillage on soil structure may decrease hydraulic conductivity within this matric potential range. The 'SWIM' (Soil Water Infiltration and Movement) simulation model was used to illustrate the effects of long-term conventional tillage and direct drilling systems on the water balance. The effects of plough pans, surface crusts and decreasing surface detention were also investigated. Significant structural deterioration, as evidenced by substantially reduced hydraulic conductivity, is necessary before significant runoff is generated in the low intensity rainfall regime of the Southern Tablelands (6 min rainfall intensity <45 mm h-1). A 10 mm thick plough pan (at a depth of 100 mm) in the A-horizon of a long-term conventionally tilled soil required a saturated hydraulic conductivity (K,) of less than 2.5 mm h-1 before runoff exceeded 10% of incident rainfall in this rainfall regime. Similarly, a crust K, of less than 2.5 mm h-1 was necessary before runoff exceeded 10% of incident rainfall (provided that surface detention was 2 or more). As the crust K, approached the rainfall rate, small decreases in Ks resulted in large increases in runoff. An increase in surface detention of 1 to 3 mm resulted in a large reduction in runoff where crust K, was less than 2-5 mm h-1. Deterministic simulation models incorporating well established physical laws are effective tools in the study of soil structural effects on the field water regime. Their application, however, is constrained by insufficient knowledge of the fundamental hydraulic properties of Australian soils and how they are changing in response to our land management.


2012 ◽  
Vol 1475 ◽  
Author(s):  
Sébastien Schneider ◽  
Dirk Mallants ◽  
Diederik Jacques

ABSTRACTThis paper presents a methodology and results on estimating hydraulic properties of the concrete and mortar considered for the near surface disposal facility in Dessel, Belgium, currently in development by ONDRAF/NIRAS. In a first part, we estimated the van parameters for the water retention curve for concrete and mortar obtained by calibration (i.e. inverse modelling) of the van Genuchten model [1] to experimental water retention data [2]. Data consisted of the degree of saturation measured at different values of relative humidity. In the second part, water retention data and data from a capillary suction experiment on concrete and mortar cores was used jointly to successfully determine the van Genuchten retention parameters and the Mualem hydraulic conductivity parameters (including saturated hydraulic conductivity) by inverse modelling.


Sign in / Sign up

Export Citation Format

Share Document