scholarly journals Numerical Analysis of Minimum Ground Temperature for Heat Extraction in Horizontal Ground Heat Exchangers

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5487
Author(s):  
Krystian Leski ◽  
Przemysław Luty ◽  
Monika Gwadera ◽  
Barbara Larwa

In this work, numerical simulation calculations were performed to investigate the minimum ground temperature that occurs when extracting thermal energy in a horizontal ground heat exchanger system in the Central European climate. The influence of ground thermal conductivity, heat flux extracted from the ground, periodic interruptions in the operation of the heat exchanger, periodic supply of heat energy to the ground, relative humidity of the ambient air, evaporation rate coefficient, and convective heat transfer coefficient on the ground minimum temperature were investigated. Based on the simulation, it was found that the high value of ground thermal conductivity favorably affects the operation of the installation with a ground heat exchanger. Both the reduction of the maximum heat flux taken from the ground, as well as periodic interruptions in the operation of the exchanger effectively protects the ground against excessive cooling. Further, it was found that heat supply to the ground in summer only slightly raises its minimum temperature, as well as the decrease of the relative humidity of the ambient air and evaporation rate coefficient. The change of the convective heat transfer coefficient has no significant impact on the minimum annual ground temperature.

Author(s):  
S. V. Sridhar ◽  
R. Karuppasamy ◽  
G. D. Sivakumar

Abstract In this investigation, the performance of the shell and tube heat exchanger operated with tin nanoparticles-water (SnO2-W) and silver nanoparticles-water (Ag-W) nanofluids was experimentally analyzed. SnO2-W and Ag-W nanofluids were prepared without any surface medication of nanoparticles. The effects of volume concentrations of nanoparticles on thermal conductivity, viscosity, heat transfer coefficient, fiction factor, Nusselt number, and pressure drop were analyzed. The results showed that thermal conductivity of nanofluids increased by 29% and 39% while adding 0.1 wt% of SnO2 and Ag nanoparticles, respectively, due to the unique intrinsic property of the nanoparticles. Further, the convective heat transfer coefficient was enhanced because of improvement of thermal conductivity of the two phase mixture and friction factor increased due to the increases of viscosity and density of nanofluids. Moreover, Ag nanofluid showed superior pressure drop compared to SnO2 nanofluid owing to the improvement of thermophysical properties of nanofluid.


Author(s):  
Pietro Marco Congedo ◽  
Stefano Collura ◽  
Paolo Maria Congedo

Nanofluids are engineered colloids made of a base fluid and nanoparticles (1–100 nm). The presence of nanoparticles causes a dramatic enhancement of thermal conductivity, an increase of convective heat transfer coefficient as well as of viscosity. These features make nanofluids suitable for the most common industrial cooling and heat transportation applications, for example in the heat exchanger whose performances can be dramatically improved. In the nanofluid literature it is not really evident the mechanism inside the unusual heat transport properties. Several studies concerning nanofluids were carried out to provide experimental data for different configurations and to find models suitable with these experiments. Unfortunately measurements available in literature seem to be affected by a significant dispersion so that some experimental data are not coherent with the others. The issue is that the properties of nanofluid are influenced by many factors such as the nature of the components, the nanoparticle size, shape and concentration, the temperature, the pH of the solution, the presence of surfactants (used to stabilize suspensions), and the charge state of the particle in suspension. Not all of these quantities are usually measured in an experimental campaign and then sometimes it is not possible to make a comparison between different experimental data available in literature. For this reason, several models proposed to validate experimental measurement work well only within a small range of validity, in terms of temperature or concentration interval or nanoparticle type. In this paper we consider always the nanofluid as a single phase and we compared different models presented in literature for the following properties: density, specific heat, viscosity and thermal conductivity. (All this properties depend, at least, on the nanoparticles concentration in the base fluid). The water-Al2O3 nanofluid is considered since several models and experimental data are available for this kind of fluid. The numerical simulations have been made by using the CFD code Fluent (release 6.3), where the models have been implemented by using external routines. The natural convection in a horizontal tube heat exchanger has been simulated in a wide region of conditions for which experimental data are available. Different models proposed in literature for viscosity and thermal conductivity have been considered, and compared to empirical models obtained by means a regression from experimental data. Aim of this work is to set suitable models which allows reproducing nanofluid behavior with a good accuracy in a wide region of different conditions.


2011 ◽  
Vol 110-116 ◽  
pp. 393-399
Author(s):  
S.M. Sohel Murshed ◽  
C.A. Nieto de Castro ◽  
M.J.V. Lourenço ◽  
M.L.M. Lopes ◽  
F.J.V. Santos

Nanofluids have attracted great interest from researchers worldwide because of their reported superior thermal performance and many potential applications. However, there are many controversies and inconsistencies in reported experimental results of thermal conductivity, convective heat transfer coefficient and critical heat flux of nanofluids. In this paper, two major features of nanofluids, which are boiling and convective heat transfer characteristics are presented besides critically reviewing recent research and development on these areas of nanofluids.


Author(s):  
Ali H. Tarrad ◽  

The ground heat exchanger plays a major role in the thermal performance and economic optimization of the ground-coupled heat pump. The present study focuses on the effect of the borehole size and the grout and soil thermal properties on the thermal assessment of these heat exchangers. A double U-tube heat exchanger was studied numerically by the COMSOL Multiphysics 5.4 software in a 3-dimensional discretization model. The double U-tube was circuited as a parallel flow arrangement and situated in a parallel configuration (PFPD) deep in the borehole. The grout and ground thermal conductivities were selected in the range of (0.73-2.0) W/m.K and (1.24-2.8) W/m.K respectively. The results revealed that the ground thermal conductivity showed a more pronounced influence on the thermal performance of the ground heat exchanger and with less extent for the grouting one. Increasing the grout filling thermal conductivity from (0.73) W/m.K to (2.0) W/m.K at a fixed ground thermal conductivity of (2.4) W/m.K has augmented the heat transfer rate by (10) %. The heat transfer rate of the ground heat exchanger exhibited marked enhancement as much as double when the ground thermal conductivity was increased from (1.24) W/m.K to (2.8) W/m.K at fixed grout thermal conductivity range of (0.78-2.0) W/m.K. It has been verified that increasing the borehole size has a negligible effect on the ground heat exchanger thermal performance when a grout with a high thermal conductivity was utilized in the ranged of examined configurations. The steady-state numerical analysis model outcomes of the present work could be implemented for the preliminary borehole design for a ground heat exchanger.


1975 ◽  
Vol 97 (1) ◽  
pp. 47-53 ◽  
Author(s):  
R. E. Forbes ◽  
J. W. Cooper

Natural convection in horizontal layers of water cooled from above to near freezing was studied analytically. The water was confined laterally and underneath by rigid insulators, and the upper horizontal surface was subjected to: (1) a constant 0C temperature, rigid conducting boundary, and (2) a free, water to air convection boundary condition, in which the convective heat transfer coefficient was held constant at values of 5.68 W/m2 · K and 284 W/m2 · K (1.0 and 50.0 Btu/hr ft2F) and the temperature of the ambient air was maintained at 0C. The ratios of the width to the depth of the rectangular water layers under consideration were W/D = 1, 3, and 6. Initially the water is assumed to be at a uniform temperature of either 4C or 8C, and then the upper surface boundary condition was suddenly applied. It was observed in all cases for which the initial water temperature was 4C, that the water remained stagnant and became thermally stratified. Heat transfer application of either of the surface boundary conditions to water initially at 8C produced large convective eddies extending from the bottom to the top of the layer of water. As the liquid layer cooled further, two distinct horizontal regions appeared, the 4C isothermal line separating the two. This produces a region of hydrodynamic instability in the fluid since the maximum density fluid (4C) is physically located above the less dense fluid in the lower portion of the cavity. The large eddies which appeared initially were confined to the hydrodynamically unstable region bounded by the 4C isotherm and the bottom of the cavity. The action of viscous shearing forces upon the stable water above the 4C isotherm produced a second “layer” of eddies. An alternating direction implicit finite difference method was used to solve the coupled system of partial differential equations. The paper presents transient isotherms and streamlines and a discussion of the effect of maximum density on the flow patterns.


2021 ◽  
Vol 11 (19) ◽  
pp. 9261
Author(s):  
Yun-Seok Choi ◽  
Youn-Jea Kim

As electrical devices become smaller, it is essential to maintain operating temperature for safety and durability. Therefore, there are efforts to improve heat transfer performance under various conditions, such as using extended surfaces and nanofluids. Among them, cooling methods using ferrofluid are drawing the attention of many researchers. This fluid can control the movement of the fluid in magnetic fields. In this study, the heat transfer performance of a fin-tube heat exchanger, using ferrofluid as a coolant, was analyzed when external magnetic fields were applied. Permanent magnets were placed outside the heat exchanger. When the magnetic fields were applied, a change in the thermal boundary layer was observed. It also formed vortexes, which affected the formation of flow patterns. The vortex causes energy exchanges in the flow field, activating thermal diffusion and improving heat transfer. A numerical analysis was used to observe the cooling performance of heat exchangers, as the strength and number of the external magnetic fields were varying. VGs (vortex generators) were also installed to create vortex fields. A convective heat transfer coefficient was calculated to determine the heat transfer rate. In addition, the comparative analysis was performed with graphical results using contours of temperature and velocity.


2013 ◽  
Vol 724-725 ◽  
pp. 909-915
Author(s):  
Ping Fang Hu ◽  
Zhong Yi Yu ◽  
Fei Lei ◽  
Na Zhu ◽  
Qi Ming Sun ◽  
...  

A vertical U-tube ground heat exchanger can be utilized to exchange heat with the soil in ground source heat pump systems. The outlet temperature of the working fluid through the U-tube not only accounts for heat transfer capacity of a ground heat exchanger, but also greatly affects the operational efficiency of heat pump units, which is an important characteristic parameter of heat transfer process. It is quantified by defining a thermal effectiveness coefficient. The performance evaluation is performed with a three dimensional numerical model using a finite volume technique. A dynamic simulation was conducted to analyze the thermal effectiveness as a function of soil thermal properties, backfill material properties, separation distance between the two tube legs, borehole depth and flow velocity of the working fluid. The influence of important characteristic parameters on the heat transfer performance of vertical U-tube ground heat exchangers is investigated, which may provide the references for the design of ground source heat pump systems in practice.


Author(s):  
Shijo Thomas ◽  
C. B. Sobhan ◽  
Jaime Taha-Tijerina ◽  
T. N. Narayanan ◽  
P. M. Ajayan

Nanofluids are suspensions or colloids produced by dispersing nanoparticles in base fluids like water, oil or organic fluids, so as to improve their thermo-physical properties. Investigations reported in recent times have shown that the addition of nanoparticles significantly influence the thermophysical properties, such as the thermal conductivity, viscosity, specific heat and density of base fluids. The convective heat transfer coefficient also has shown anomalous variations, compared to those encountered in the base fluids. By careful selection of the parameters such as the concentration and the particle size, it has been possible to produce nanofluids with various properties engineered depending on the requirement. A mineral oil–boron nitride nanofluid system, where an increased thermal conductivity and a reduced electrical conductivity has been observed, is investigated in the present work to evaluate its heat transfer performance under natural convection. The modified mineral oil is produced by chemically dispersing boron nitride nanoparticles utilizing a one step method to obtain a stable suspension. The mineral oil based nanofluid is investigated under transient free convection heat transfer, by observing the temperature-time response of a lumped parameter system. The experimental study is used to estimate the time-dependent convective heat transfer coefficient. Comparisons are made with the base fluid, so that the enhancement in the heat transfer coefficient under natural convection situation can be estimated.


Sign in / Sign up

Export Citation Format

Share Document