Modeling and Analysis of Natural Convection Heat Transfer in Nanofluids

Author(s):  
Pietro Marco Congedo ◽  
Stefano Collura ◽  
Paolo Maria Congedo

Nanofluids are engineered colloids made of a base fluid and nanoparticles (1–100 nm). The presence of nanoparticles causes a dramatic enhancement of thermal conductivity, an increase of convective heat transfer coefficient as well as of viscosity. These features make nanofluids suitable for the most common industrial cooling and heat transportation applications, for example in the heat exchanger whose performances can be dramatically improved. In the nanofluid literature it is not really evident the mechanism inside the unusual heat transport properties. Several studies concerning nanofluids were carried out to provide experimental data for different configurations and to find models suitable with these experiments. Unfortunately measurements available in literature seem to be affected by a significant dispersion so that some experimental data are not coherent with the others. The issue is that the properties of nanofluid are influenced by many factors such as the nature of the components, the nanoparticle size, shape and concentration, the temperature, the pH of the solution, the presence of surfactants (used to stabilize suspensions), and the charge state of the particle in suspension. Not all of these quantities are usually measured in an experimental campaign and then sometimes it is not possible to make a comparison between different experimental data available in literature. For this reason, several models proposed to validate experimental measurement work well only within a small range of validity, in terms of temperature or concentration interval or nanoparticle type. In this paper we consider always the nanofluid as a single phase and we compared different models presented in literature for the following properties: density, specific heat, viscosity and thermal conductivity. (All this properties depend, at least, on the nanoparticles concentration in the base fluid). The water-Al2O3 nanofluid is considered since several models and experimental data are available for this kind of fluid. The numerical simulations have been made by using the CFD code Fluent (release 6.3), where the models have been implemented by using external routines. The natural convection in a horizontal tube heat exchanger has been simulated in a wide region of conditions for which experimental data are available. Different models proposed in literature for viscosity and thermal conductivity have been considered, and compared to empirical models obtained by means a regression from experimental data. Aim of this work is to set suitable models which allows reproducing nanofluid behavior with a good accuracy in a wide region of different conditions.

Author(s):  
S. V. Sridhar ◽  
R. Karuppasamy ◽  
G. D. Sivakumar

Abstract In this investigation, the performance of the shell and tube heat exchanger operated with tin nanoparticles-water (SnO2-W) and silver nanoparticles-water (Ag-W) nanofluids was experimentally analyzed. SnO2-W and Ag-W nanofluids were prepared without any surface medication of nanoparticles. The effects of volume concentrations of nanoparticles on thermal conductivity, viscosity, heat transfer coefficient, fiction factor, Nusselt number, and pressure drop were analyzed. The results showed that thermal conductivity of nanofluids increased by 29% and 39% while adding 0.1 wt% of SnO2 and Ag nanoparticles, respectively, due to the unique intrinsic property of the nanoparticles. Further, the convective heat transfer coefficient was enhanced because of improvement of thermal conductivity of the two phase mixture and friction factor increased due to the increases of viscosity and density of nanofluids. Moreover, Ag nanofluid showed superior pressure drop compared to SnO2 nanofluid owing to the improvement of thermophysical properties of nanofluid.


Author(s):  
Syed Sameer ◽  
SB Prakash ◽  
G Narayana Swamy

Nanoparticles enhances the heat transfer between particles and the fluids due to their high specific surface area and adjustable properties, including thermal conductivity and surface wettability, by varying particle volume concentrations in the base fluid to suit different applications. This article is an experimental study on the effectiveness and overall heat transfer coefficient in STHE (shell and tube heat exchanger), comprising baffle cut 25% with a nanofluid at 0.05, 0.1, and 0.2 percentage concentrations of CuO nanoparticles in the DW (distilled water) base-fluid. The inclusion of 0.15% SDBS (Sodium dodecyl-benzene sulphonate) by a two-step method as a surfactant improves the stability of dispersed CuO nanoparticles. The CuO/DW nanofluid thermo-physical properties such as thermal conductivity (k), density (ρ), and dynamic viscosity (μ), have increased. However, the nanofluid's specific heat (Cp) reduces as the nanoparticles proportion rises in the DW base fluid. There is an enhancement of the overall heat transfer coefficient and effectiveness compared to water during parallel flow variation. The maximum heat exchanger effectiveness was 3.01%, 4.01%, and 5.94% higher than water at 0.6 lpm mass flow rate and temperature T = 80 °C for volume fractions of 0.05, 0.1, and 0.2 percentage of CuO/DW nanofluid respectively during parallel flow.


Author(s):  
Hie Chan Kang ◽  
Hyun Soon Jang

An experimental study has been conducted on natural convection heat transfer for seventeen kinds of circular finned tube heat exchanger. The transient method was used to obtain the heat transfer coefficient. The experimental data were presented and their characteristics lengths were discussed. The experimental data were presented and correlated in the ranges of 27 < RaDh < 2300, 1.2 < Do/Di < 2.8, and 0.12 < Pf/Di < 0.26. The Nusselt number correlated with the quarter power of the Rayleigh number, based on the hydraulic diameter, for the small diameter fins, the same as laminar natural convection; however, the correlation was with the half power for the large fin diameters and small fin pitches.


2013 ◽  
Vol 832 ◽  
pp. 154-159 ◽  
Author(s):  
Islam Md. Shahrul ◽  
I.M. Mahbubul ◽  
Rahman Saidur ◽  
Mohd Faizul Mohd Sabri ◽  
Muhammad Afifi Amalina ◽  
...  

Global warming and other problems can be reduced by effectively using the available materials and facilities. Heat exchangers play an important part of the field of energy conservation, conversion and recovery. Shell & tube heat exchangers are widely using in industrial processes and power plants. Suspension of small amounts of nanoparticles into the base fluid called nanofluid can reduce the global energy losses. Thermal conductivity of Multi Walled Carbon Nanotube (MWCNT) is highest among the different nano materials [1]. Therefore, in this paper, the overall performance of a shell & tube heat exchanger has been analytically investigated by using MWCNT-W nanofluid with 0.02-0.1 vol. fractions of MWCNT and compared with water. Mathematical formula, specifications of heat exchanger and nanofluid properties were taken from the literatures to analyze the energy performance and other effects within the system. It is found that for certain mass flow rates of nanofluid and base fluid, the convective heat transfer coefficient increased around 4% to 17% compared to pure water, respectively for 0.02-0.1 vol. fractions of MWCNT in water. However, for constant vol. fractions of MWCNT, convective heat transfer coefficient of the above nanofluid negligibly changed for different mass flow rates. Furthermore, energy effectiveness of the heat exchanger also improved approximately by 3% to 14%, respectively. This energy effectiveness again improved with the decrease of the mass flow rates of nanofluids (tube side) and increase of the mass flow rates of base fluid (shell side). As energy effectiveness is increased by using MWCNT-W nanofluid, therefore, a significant amount of heat losses will be reduced. As a result, with the reduced heat emissions, global warming and greenhouse effects can be reduced by using MWCNT-W nanofluid as working fluid in shell & tube heat exchanger system.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 968-980
Author(s):  
Xueping Du ◽  
Zhijie Chen ◽  
Qi Meng ◽  
Yang Song

Abstract A high accuracy of experimental correlations on the heat transfer and flow friction is always expected to calculate the unknown cases according to the limited experimental data from a heat exchanger experiment. However, certain errors will occur during the data processing by the traditional methods to obtain the experimental correlations for the heat transfer and friction. A dimensionless experimental correlation equation including angles is proposed to make the correlation have a wide range of applicability. Then, the artificial neural networks (ANNs) are used to predict the heat transfer and flow friction performances of a finned oval-tube heat exchanger under four different air inlet angles with limited experimental data. The comparison results of ANN prediction with experimental correlations show that the errors from the ANN prediction are smaller than those from the classical correlations. The data of the four air inlet angles fitted separately have higher precisions than those fitted together. It is demonstrated that the ANN approach is more useful than experimental correlations to predict the heat transfer and flow resistance characteristics for unknown cases of heat exchangers. The results can provide theoretical support for the application of the ANN used in the finned oval-tube heat exchanger performance prediction.


2021 ◽  
Vol 11 (19) ◽  
pp. 9261
Author(s):  
Yun-Seok Choi ◽  
Youn-Jea Kim

As electrical devices become smaller, it is essential to maintain operating temperature for safety and durability. Therefore, there are efforts to improve heat transfer performance under various conditions, such as using extended surfaces and nanofluids. Among them, cooling methods using ferrofluid are drawing the attention of many researchers. This fluid can control the movement of the fluid in magnetic fields. In this study, the heat transfer performance of a fin-tube heat exchanger, using ferrofluid as a coolant, was analyzed when external magnetic fields were applied. Permanent magnets were placed outside the heat exchanger. When the magnetic fields were applied, a change in the thermal boundary layer was observed. It also formed vortexes, which affected the formation of flow patterns. The vortex causes energy exchanges in the flow field, activating thermal diffusion and improving heat transfer. A numerical analysis was used to observe the cooling performance of heat exchangers, as the strength and number of the external magnetic fields were varying. VGs (vortex generators) were also installed to create vortex fields. A convective heat transfer coefficient was calculated to determine the heat transfer rate. In addition, the comparative analysis was performed with graphical results using contours of temperature and velocity.


Author(s):  
Shijo Thomas ◽  
C. B. Sobhan ◽  
Jaime Taha-Tijerina ◽  
T. N. Narayanan ◽  
P. M. Ajayan

Nanofluids are suspensions or colloids produced by dispersing nanoparticles in base fluids like water, oil or organic fluids, so as to improve their thermo-physical properties. Investigations reported in recent times have shown that the addition of nanoparticles significantly influence the thermophysical properties, such as the thermal conductivity, viscosity, specific heat and density of base fluids. The convective heat transfer coefficient also has shown anomalous variations, compared to those encountered in the base fluids. By careful selection of the parameters such as the concentration and the particle size, it has been possible to produce nanofluids with various properties engineered depending on the requirement. A mineral oil–boron nitride nanofluid system, where an increased thermal conductivity and a reduced electrical conductivity has been observed, is investigated in the present work to evaluate its heat transfer performance under natural convection. The modified mineral oil is produced by chemically dispersing boron nitride nanoparticles utilizing a one step method to obtain a stable suspension. The mineral oil based nanofluid is investigated under transient free convection heat transfer, by observing the temperature-time response of a lumped parameter system. The experimental study is used to estimate the time-dependent convective heat transfer coefficient. Comparisons are made with the base fluid, so that the enhancement in the heat transfer coefficient under natural convection situation can be estimated.


Author(s):  
Paritosh Singh

Abstract: Research in convective heat transfer using suspensions of nanometer sized solid particles in a base fluid started only over the past decade. Recent investigations on nanofluids, as such suspensions are often called, indicate that the suspended nanoparticles markedly change the transport properties and heat transfer characteristics of the suspension. The very first part of the research work summarizes about the various thermo physical properties of Al2O3 Nanofluid. In evacuated tube solar water heating system nanofluids are used as primary fluid and DM water as secondary fluid in Shell and Tube Heat Exchanger. The experimental analysis of Shell and Tube heat exchanger integrated with Evacuated tube solar collector have been carried out with two types of primary fluids. Research study of shell and tube heat exchanger is focused on heat transfer enhancement by usage of nano fluids. Conventional heat transfer fluids have inherently low thermal conductivity that greatly limits the heat exchange efficiency. The result of analysis shows that average relative variation in LMTD and overall heat transfer coefficient is 24.56% and 52.0% respectively. The payback period of system is reduced by 0.4 years due to saving is in replacement cost of Evacuated Tube Collector. Keywords: ETC; Nanofluid; LMTD; Thermal Conductivity; Overall heat transfer coefficient


2019 ◽  
Vol 12 (4) ◽  
pp. 350-356 ◽  
Author(s):  
Mohammed Kareemullah ◽  
K.M. Chethan ◽  
Mohammed K. Fouzan ◽  
B.V. Darshan ◽  
Abdul Razak Kaladgi ◽  
...  

Background:: In Shell and Tube Heat Exchanger (STHX), heat is exchanged between hot water (coming from industrial outlet by forced convection) to the cold water. Instead of water, if Nano fluids are used into these tubes, then there is a possibility of improved heat transfer because of high thermal conductivity of the nanofluids. Objective:: From many literature and patents, it was clear that the study of STHX using metal oxide nanoparticles is very scarce. Therefore, the objective of the present investigation is to check the thermal performance of STHX operated with zinc oxide nanofluid and compare with water as the base fluid. Methods:: Heat transfer analysis of a shell and tube heat exchanger was carried out experimentally using Zinc oxide as a nanofluid. Mass flow rate on tube side was varied while on the shell side it was kept constant. Various heat transfer parameters like heat transfer coefficient, heat transfer rate effectiveness and LMTD (Log Mean Temperature Difference) were studied. The experimental readings were recorded after the steady-state is reached under forced flow conditions. Results:: It was found that the effectiveness improves with increase in mass flow rate of nanofluids as compared to base fluid. Conclusion:: From the obtained results, it was concluded that heat transfer enhancement and effectiveness improvement does occur with nano fluids but at the cost of pumping power.


Sign in / Sign up

Export Citation Format

Share Document