scholarly journals Magnetic FEA Direct Optimization of High-Power Density, Halbach Array Permanent Magnet Electric Motors

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5939
Author(s):  
Jean-Michel Grenier ◽  
Ramón Pérez ◽  
Mathieu Picard ◽  
Jérôme Cros

Hybrid electric aero-propulsion requires high power-density electric motors. The use of a constrained optimization method with the finite element analysis (FEA) is the best way to design these motors and to find the best solutions which maximize the power density. This makes it possible to take into account all the details of the geometry as well as the non-linear characteristics of magnetic materials, the conductive material and the current control strategy. Simulations were performed with a time stepping magnetodynamic solver while taking account the rotor movement and the stator winding was connected by an external electrical circuit. This study describes the magnetic FEA direct optimization approach for the design of Halbach array permanent magnet synchronous motors (PMSMs) and its advantages. An acceptable compromise between precision and computation time to estimate the electromagnetic torque, iron losses and eddy current losses was found. The finite element simulation was paired with analytical models to compute stress on the retaining sleeve, aerodynamic losses, and copper losses. This type of design procedure can be used to find the best machine configurations and establish design rules based on the specifications and materials selected. As an example, optimization results of PM motors minimizing total losses for a 150-kW application are presented for given speeds in the 2000 rpm to 50,000 rpm range. We compare different numbers of poles and power density between 5 kW/kg and 30 kW/kg. The choice of the number of poles is discussed in the function of the motor nominal speed and targeted power density as well as the compromise between iron losses and copper losses. In addition, the interest of having the current-control strategy as an optimization variable to generate a small amount of flux weakening is clearly shown.

2014 ◽  
Vol 651-653 ◽  
pp. 808-811
Author(s):  
Hao Ming Zhang ◽  
Hong Li ◽  
Lian Soon Peh

The present motors are required to high speed, high efficiency, high power density but low pulsating torque. Traditonal rare-earth permanent magnet motor shows its defect; Halbach Array is a new type of permanent magnet structure: magnet field presents unilateral with the sinusoidal distribution. The structure makes the magnetic density of motor’s air gap larger relatively while the magnetic density of rotor’s yoke smaller. And it can help to reduce the motor’s pulsating torque and its size, as well as to raise the power density of motor. The result of finite element analysis based on ANSYS shows that the above structure is able to decrease the mass of motor, to widen the width of air gap and obviously to improve the multi properties of motors.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3204 ◽  
Author(s):  
Jiang You ◽  
Mengyan Liao ◽  
Hailong Chen ◽  
Negareh Ghasemi ◽  
Mahinda Vilathgamuwa

The high-power density and capability of three-port converters (TPCs) in generating demanded power synchronously using flexible control strategy make them potential candidates for renewable energy applications to enhance efficiency and power density. The control performance of isolated TPCs can be degraded due to the coupling and interaction of power transmission among different ports, variations of model parameters caused by the changes of the operation point and resonant peak of LC circuit. To address these issues, a linear active disturbance rejection control (LADRC) system is developed in this paper for controlling the utilized TPC. A virtual damping based method is proposed to increase damping ratio of current control subsystem of TPC which is beneficial in further improving dynamic control performance. The simulation and experimental results show that compared to the traditional frequency control strategy, the control performance of isolated TPC can be improved by using the proposed method.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4301
Author(s):  
Ahmed H. Okilly ◽  
Namhun Kim ◽  
Jeihoon Baek

This paper presents a complete mathematical design of the main components of 2 kW, 54 direct current (DC)–DC converter stage, which can be used as the second stage of the two stages of alternating current (AC)–DC telecom power supply. In this paper, a simple inrush current controlling circuit to eliminate the high inrush current, which is generated due to high input capacitor at the input side of the DC–DC converter, is proposed, designed, and briefly discussed. The proposed circuit is very easy to implement in the lab using a single metal–oxide–semiconductor field-effect transistor (MOSFET) switch and some small passive elements. PSIM simulation has been used to test the power supply performance using the value of the designed components. Furthermore, the experimental setup of the designed power supply with inrush current control is built in the lab to show the practical performance of the designed power supply and to test the reliability of the proposed inrush current mitigation circuit to eliminate the high inrush current at initial power application to the power supply circuit. DC–DC power supply with phase shift zero voltage switching (ZVS) technique is chosen and designed due to its availability to achieve ZVS over the full load range at the primary side of the power supply, which reduces switching losses and offers high conversion efficiency. High power density DC–DC converter stage with smooth current startup operation, full load efficiency over 95%, and better voltage regulation is achieved in this work.


Sign in / Sign up

Export Citation Format

Share Document