scholarly journals The Use of the Local and Regional Potential in Building Energy Independence—Polish and Ukraine Case Study

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6118
Author(s):  
Marek Cierpiał-Wolan ◽  
Bogdan Wierzbiński ◽  
Dariusz Twaróg

Biogas production in Poland and Ukraine seems to be a good way to both reduce greenhouse gas emissions and increase energy self-sufficiency by supplementing conventional energy sources. The aim of the research was to assess the potential of biogas production and the possibility of increasing it at the regional level of both studied countries and was conducted in 2018. The study included an analysis of seasonal heat demand, and the results showed biogas heat surpluses and shortages in each region. The financial side of the investment discussed using the example of the selected administrative unit showed that the construction costs of the biogas plant would be paid back after 7~9 years. The presented results also showed that Polish regions have much higher variation of biogas production potential (0.14~1.09 billion m3) than Ukrainian regions (0.09~0.3 billion m3). The analysis of the possibilities of increasing the potential based on the cultivation of maize in wastelands showed that in this respect, the Ukrainian regions have better opportunities compared to Polish regions. In the case of 20 regions, the maximum use of the potential of biogas should result in an increase in the share of renewable sources in the energy mix to above the level of 25%. Poland and Ukraine have comparable biogas production potentials of ~10 billion m3 annually, which results in a comparable number of biogas plants needed to consume that potential as well as the number of new jobs. The above analyses were also carried out at the LAU level (powiats and raions) where the potential of regional cooperation for four border regions is discussed.

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5755
Author(s):  
Adam Wąs ◽  
Piotr Sulewski ◽  
Vitaliy Krupin ◽  
Nazariy Popadynets ◽  
Agata Malak-Rawlikowska ◽  
...  

Renewable energy production is gaining importance in the context of global climate changes. However, in some countries other aspects increasing the role of renewable energy production are also present. Such a country is Ukraine, which is not self-sufficient in energy supply and whose dependency on poorly diversified import of energy carriers regularly leads to political tensions and has socio-economic implications. Production of agricultural biogas seems to be a way to both slow down climatic changes and increase energy self-sufficiency by replacing or complementing conventional sources of energy. One of the most substantial barriers to agricultural biogas production is the low level of agricultural concentration and significant economies of scale in constructing biogas plants. The aim of the paper was thus to assess the potential of agricultural biogas production in Ukraine, including its impact on energy self-sufficiency, mitigation of greenhouse gas (GHG) emissions and the economic performance of biogas plants. The results show that due to the prevailing fragmentation of farms, most manure cannot be processed in an economically viable way. However, in some regions utilization of technically available manure for agricultural biogas production could cover up to 11% of natural gas or up to 19% of electricity demand. While the theoretical potential for reducing greenhouse gas emissions could reach 5% to 6.14%, the achievable technical potential varies between 2.3% and 2.8% of total emissions. The economic performance of agricultural biogas plants correlates closely with their size and bioenergy generation potential.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2424
Author(s):  
Jan Martin Zepter ◽  
Jan Engelhardt ◽  
Tatiana Gabderakhmanova ◽  
Mattia Marinelli

Biogas plants may support the transformation towards renewable-based and integrated energy systems by providing dispatchable co-generation as well as opportunities for biogas upgrading or power-to-X conversion. In this paper, a simulation model that comprises the main dynamics of the internal processes of a biogas plant is developed. Based on first-order kinetics of the anaerobic digestion process, the biogas production of an input feeding schedule of raw material can be estimated. The output of the plant in terms of electrical and thermal energy is validated against empirical data from a 3-MW biogas plant on the Danish island of Bornholm. The results show that the model provides an accurate representation of the processes within a biogas plant. The paper further provides insights on the functioning of the biogas plant on Bornholm as well as discusses upgrading potentials of biogas to biomethane at the plant from an energy perspective.


2005 ◽  
Vol 43 (2) ◽  
pp. 159-182 ◽  
Author(s):  
Marloes van Amerom ◽  
Bram Büscher

The pursuit of an African Renaissance has become an important aspect of regional cooperation between South Africa and its neighbours. Transfrontier conservation areas, or ‘Peace Parks’ as they are popularly called, have been identified as key instruments to promote the African Renaissance dream, and are increasingly advocated and justified on this basis. By fostering joint conservation (and tourism) development in Southern Africa's marginalised border regions, Peace Parks are claimed to further international peace, regional cooperation and poverty reduction, and thus serve basic ideals of the African Renaissance. This article critically explores this assumption. Using the joint South African-Mozambican-Zimbabwean Great Limpopo Park as a case study, it argues that in reality the creation of Peace Parks hardly stimulates and possibly even undermines the realisation of the African Renaissance ideals of regional cooperation, emancipation, cultural reaffirmation, sustainable economic development and democratisation. So far, their achievement has been severely hindered by domination of national interests, insufficient community consultation, and sensitive border issues such as the illegal flows of goods and migrants between South Africa and neighbouring countries. Furthermore, exacerbation of inter-state differences induced by power imbalances in the region, and harmonisation of land use and legal systems across boundaries, are increasingly becoming sources of conflict and controversy. Some of these problems are so severe, we conclude, that they might eventually even undermine support for African Renaissance as a whole. Utmost care is thus required to optimally use the chances that Peace Parks do offer in furthering an African Renaissance.


2018 ◽  
Vol 8 (11) ◽  
pp. 2083 ◽  
Author(s):  
Magdalena Muradin ◽  
Katarzyna Joachimiak-Lechman ◽  
Zenon Foltynowicz

Implementation of the circular economy is one of the priorities of the European Union, and energy efficiency is one of its pillars. This article discusses an effective use of agri-food industry waste for the purposes of waste-to-energy in biogas plants. Its basic objective is the comparative assessment of the eco-efficiency of biogas production depending on the type of feedstock used, its transport and possibility to use generated heat. The environmental impact of the analysed installations was assessed with the application of the Life Cycle Assessment (LCA) methodology. Cost calculation was performed using the Levelized Cost of Electricity (LCOE) method. The LCA analysis indicated that a biogas plant with a lower level of waste heat use where substrates were delivered by wheeled transport has a negative impact on the environment. The structure of distributed energy production cost indicates a substantial share of feedstock supply costs in the total value of the LCOE ratio. Thus, the factor affecting the achievement of high eco-efficiency is the location of a biogas plant in the vicinity of an agri-food processing plant, from which the basic feedstock for biogas production is supplied with the transmission pipeline, whereas heat is transferred for the needs of production processes in a processing plant or farm.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5374
Author(s):  
Robert Bedoić ◽  
Goran Smoljanić ◽  
Tomislav Pukšec ◽  
Lidija Čuček ◽  
Davor Ljubas ◽  
...  

Crop-based biogas energy production, in combination with electricity generation under subsidy schemes, is no longer considered a favourable business model for biogas plants. Switching to low-cost or gate fee feedstocks and utilising biogas via alternative pathways could contribute to making existing plants fit for future operations and could open up new space for further expansion of the biogas sector. The aim of this study was to combine a holistic and interdisciplinary approach for both the biogas production side and the utilisation side to evaluate the impact of integrating the biogas sector with waste management systems and energy systems operating with a high share of renewable energy sources. The geospatial availability of residue materials from agriculture, industry and municipalities was assessed using QGIS software for the case of Northern Croatia with the goal of replacing maize silage in the operation of existing biogas plants. Furthermore, the analysis included positioning new biogas plants, which would produce renewable gas. The overall approach was evaluated through life cycle assessment using SimaPro software to quantify the environmental benefits and identify the bottlenecks of the implemented actions. The results showed that the given feedstocks could replace 212 GWh of biogas from maize silage in the relevant region and create an additional 191 GWh of biomethane in new plants. The LCA revealed that the proposed measures would contribute to the decarbonisation of natural gas by creating environmental benefits that are 36 times greater compared to a business-as-usual concept. The presented approach could be of interest to stakeholders in the biogas sector anywhere in the world to encourage further integration of biogas technologies into energy and environmental transitions.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3761 ◽  
Author(s):  
Abdullah Nsair ◽  
Senem Onen Cinar ◽  
Ayah Alassali ◽  
Hani Abu Qdais ◽  
Kerstin Kuchta

The biogas production technology has improved over the last years for the aim of reducing the costs of the process, increasing the biogas yields, and minimizing the greenhouse gas emissions. To obtain a stable and efficient biogas production, there are several design considerations and operational parameters to be taken into account. Besides, adapting the process to unanticipated conditions can be achieved by adequate monitoring of various operational parameters. This paper reviews the research that has been conducted over the last years. This review paper summarizes the developments in biogas design and operation, while highlighting the main factors that affect the efficiency of the anaerobic digestion process. The study’s outcomes revealed that the optimum operational values of the main parameters may vary from one biogas plant to another. Additionally, the negative conditions that should be avoided while operating a biogas plant were identified.


2020 ◽  
Vol 180 ◽  
pp. 02019 ◽  
Author(s):  
Marzhan Temirbekova ◽  
Madina Aliyarova ◽  
Iliya Iliev ◽  
Aliya Yelemanova ◽  
Saule Sagintayeva

This paper justifies the efficiency of the biogas collection and utilization at the MSW (municipal solid waste) landfill in Almaty with the installation of several modern biogas plants. The optimal mode of processes occurring in a biogas plant is determined by computer generated simulations. Mathematical model parameters were identified to describe biochemical processes occurring in a biogas plant. Two approaches are used to resolve the mathematical model: the finite-difference method for solving the system of differential equations and simulation modeling by using the Any Logic package. A program is written in the algorithmic language C ++. Numerous calculations were carried out, the results of which are presented in curves and their qualitative picture is consistent with the ongoing processes. The created computer program allows to make a preliminary forecast of anaerobic fermentation occurring in the bioreactor depending on volume of the substrate, methane microorganisms and temperature conditions.


Proceedings ◽  
2018 ◽  
Vol 2 (22) ◽  
pp. 1385 ◽  
Author(s):  
Lena Peters ◽  
Piotr Biernacki ◽  
Frank Uhlenhut ◽  
Sven Steinigeweg

In future, systems for energy storage and demand-driven energy production will be essential to cover the residual load rises. A rigorous dynamic process model based on ADM1 was used to analyze the flexible operation of biogas plants for covering the residual load rises. This model was optimized and an operation concept for a demand-driven energy production was worked out. For the input data different substrates were analyzed by batch fermentations and the Weender analysis with van Soest method. The results show that the substrates have got a different biogas production rate and reaction time. Finally, an intelligent feeding algorithm by implementation of a PI controller was developed. It calculates feeding times and quantities of available substrates so that a defined energy demand can be covered by biogas plants. The results demonstrate that a flexible operation of biogas plants with an individual and intelligent feeding program is possible.


Sign in / Sign up

Export Citation Format

Share Document