scholarly journals Advanced Discretisation and Visualisation Methods for Performance Profiling of Wind Turbines

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6216
Author(s):  
Michiel Dhont ◽  
Elena Tsiporkova ◽  
Veselka Boeva

Wind turbines are typically organised as a fleet in a wind park, subject to similar, but varying, environmental conditions. This makes it possible to assess and benchmark a turbine’s output performance by comparing it to the other assets in the fleet. However, such a comparison cannot be performed straightforwardly on time series production data since the performance of a wind turbine is affected by a diverse set of factors (e.g., weather conditions). All these factors also produce a continuous stream of data, which, if discretised in an appropriate fashion, might allow us to uncover relevant insights into the turbine’s operations and behaviour. In this paper, we exploit the outcome of two inherently different discretisation approaches by statistical and visual analytics. As the first discretisation method, a complex layered integration approach is used. The DNA-like outcome allows us to apply advanced visual analytics, facilitating insightful operating mode monitoring. The second discretisation approach is applying a novel circular binning approach, capitalising on the circular nature of the angular variables. The resulting bins are then used to construct circular power maps and extract prototypical profiles via non-negative matrix factorisation, enabling us to detect anomalies and perform production forecasts.

2020 ◽  
Vol 12 (18) ◽  
pp. 7818
Author(s):  
Jose Alberto Moleón Baca ◽  
Antonio Jesús Expósito González ◽  
Candido Gutiérrez Montes

This paper presents a numerical and experimental analysis of the patent of a device to be used in vertical-axis wind turbines (VAWTs) under extreme wind conditions. The device consists of two hemispheres interconnected by a set of conveniently implemented variable section ducts through which the wind circulates to the blades. Furthermore, the design of the cross-section of the ducts allows the control of the wind speed inside the device. These ducts are intended to work as diffusers or nozzles, depending on the needs of the installation site. Simulations were performed for the case of high-speed external wind, for which the ducts act as diffusers to reduce wind speed and maintain a well-functioning internal turbine. Four different patent designs were analyzed, focusing on turbine performance and generated power. The results indicate that the patent allows the generation of electric power for a greater range of wind speeds than with a normal wind turbine. The results support that this patent may be a good alternative for wind power generation in geographic areas with extreme weather conditions or with maintained or strong gusty wind. Experimental tests were carried out on the movement of the blades using the available model. Finally, the power curve of the model of this wind turbine was obtained.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2650 ◽  
Author(s):  
Lubing Xie ◽  
Xiaoming Rui ◽  
Shuai Li ◽  
Xin Hu

Owing to the late development of offshore wind power in China, operational data and maintenance experience are relatively scarce. Due to the harsh environmental conditions, a reliability analysis based on limited sample fault data has been regarded as an effective way to investigate maintenance optimization for offshore wind farms. The chief aim of the present work is to develop an effective strategy to reduce the maintenance costs of offshore wind turbines in consideration of their accessibility. The three-parameter Weibull distribution method was applied to failure rate estimation based on limited data. Moreover, considering the impacts of weather conditions on the marine maintenance activities, the Markov method and dynamic time window were used to depict the weather conditions. The opportunistic maintenance strategy was introduced to cut down on the maintenance costs through optimization of the preventive maintenance age and opportunistic maintenance age. The simulation analysis we have performed showed that the maintenance costs of the opportunistic maintenance strategy were 10% lower than those of the preventive maintenance strategy, verifying the effectiveness of the proposed maintenance strategy.


Author(s):  
Susan W. Stewart ◽  
Sue Ellen Haupt ◽  
Julia A. Cole

This study addresses the issue of siting wind turbines on existing structures in the built environment for optimal performance. Annually averaged wind power maps were produced over the surface of two different building types using a Detached Eddy Simulation (DES) model in order to assess the feasibility of building integrated wind under various wind resource conditions. The modeling approach was first applied to a cubical geometry for which validation of the CFD results was possible with existing field measurements. A pitched roof building was also modeled to study the power density over top of typical residential shaped structures. The average annual power density for twenty-seven locations over the top of the modeled structures was analyzed under varying wind direction distributions (wind roses). The overall results of this study have the potential to inform the wind energy and built environment communities on best practices for siting wind turbines on or near buildings.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3269
Author(s):  
Johnny de Jong ◽  
Lara Millon ◽  
Olle Håstad ◽  
Jonas Victorsson

We present data on species composition and activity of bats during two years at three different wind- turbines, located in south Sweden, both at the base and nacelle height. To test the hypothesis that bats are attracted to wind turbines because of feeding opportunities, insects were sampled at nacelle height at one wind turbine using a suction trap, simultaneously as bat activity were measured. At this wind turbine, we also compared two different technical systems for ultrasound recordings and collect meteorological data. The variation in bat activity was high between nights and between wind turbines. In addition to the expected open-air foraging species (Pipistrellus, Nyctalus, Vespertilio and Eptesicus), some individuals of unexpected species (Myotis, Barbastella, and Plecotus) were found at nacelle height. There was a weak but significant positive relation between bat activity and insect abundance, so the hypothesis could not be rejected, suggesting there might be other factors than insect abundance explaining the frequency of bat visits at the nacelle. We found a strong correlation between bat passes and weather conditions. A reasonable way to mitigate collisions is with stop-regulation. However, this study highlights some of the problems with defining the limits for stop-regulation based on weather conditions.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6544
Author(s):  
Tomasz Malec ◽  
Tomasz Boczar ◽  
Daria Wotzka ◽  
Michał Kozioł

The development of wind energy and the increasing number of installed wind turbines make it necessary to assess them in terms of the nuisance of the emitted infrasound noise generated by such devices. The article presents the results of measurements and analyses of infrasound emitted during the operation of wind turbines installed in various locations in Poland. Comparative analysis of noise levels in the infrasound and audible range has shown that acoustic energy is mainly in the low and infrasound frequency range, and the measured levels depend significantly on the weighting curves used. On the basis of the results, it was confirmed that the sound pressure level of infrasound signals emitted by the operation of high-power wind turbines, regardless of wind velocity, weather conditions, design solutions of turbines, operating time, rated capacity, does not exceed the criteria specified in the applicable legislation dealing with the assessment of infrasound noise on the working environment.


Green ◽  
2011 ◽  
Vol 1 (2) ◽  
Author(s):  
Stefan Emeis

AbstractA simple consideration - based on an analytically solvable model of the momentum balance - is presented, which calculates the reduction in wind speed at hub height in an indefinitely large wind park as function of surface roughness, atmospheric thermal stability, and the mean distance between the wind turbines in this wind park. Weakest reduction occurs for a wind park erected on a rough land surface during unstable thermal stratification (minus 2%). Highest reduction occurs for an offshore wind park over a very smooth sea surface during stable thermal conditions (minus 45%). This model can be used to find the optimum distance between wind turbines in wind parks. Likewise this model calculates the wake length of entire wind parks as function of surface roughness and thermal stability. For offshore wind parks wake lengths between 10 and 30 km are found, for onshore parks this length is much less. This additional information can be used to find the optimum distance between adjacent wind parks.


Author(s):  
J. Enrique Sierra-Garcia ◽  
Matilde Santos

AbstractThis work focuses on the control of the pitch angle of wind turbines. This is not an easy task due to the nonlinearity, the complex dynamics, and the coupling between the variables of these renewable energy systems. This control is even harder for floating offshore wind turbines, as they are subjected to extreme weather conditions and the disturbances of the waves. To solve it, we propose a hybrid system that combines fuzzy logic and deep learning. Deep learning techniques are used to estimate the current wind and to forecast the future wind. Estimation and forecasting are combined to obtain the effective wind which feeds the fuzzy controller. Simulation results show how including the effective wind improves the performance of the intelligent controller for different disturbances. For low and medium wind speeds, an improvement of 21% is obtained respect to the PID controller, and 7% respect to the standard fuzzy controller. In addition, an intensive analysis has been carried out on the influence of the deep learning configuration parameters in the training of the hybrid control system. It is shown how increasing the number of hidden units improves the training. However, increasing the number of cells while keeping the total number of hidden units decelerates the training.


Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4078 ◽  
Author(s):  
Tania García-Sánchez ◽  
Irene Muñoz-Benavente ◽  
Emilio Gómez-Lázaro ◽  
Ana Fernández-Guillamón

Wind power plants depend greatly on weather conditions, thus being considered intermittent, uncertain and non-dispatchable. Due to the massive integration of this energy resource in the recent decades, it is important that transmission and distribution system operators are able to model their electrical behaviour in terms of steady-state power flow, transient dynamic stability, and short-circuit currents. Consequently, in 2015, the International Electrotechnical Commission published Standard IEC 61400-27-1, which includes generic models for wind power generation in order to estimate the electrical characteristics of wind turbines at the connection point. This paper presents, describes and details the models for wind turbine topologies Types 1 and 2 following IEC 61400-27-1 for electrical simulation purposes, including the values for the parameters for the different subsystems. A hardware-in-the-loop combined with a real-time simulator is also used to analyse the response of such wind turbine topologies under voltage dips. The evolution of active and reactive powers is discussed, together with the wind turbine rotor and generator rotational speeds.


Author(s):  
Katherine Faley ◽  
Mario Garcia-Sanz

This paper presents a novel control structure to mitigate the mechanical fatigue in towers of onshore and offshore wind turbines. A general wind turbine dynamic model for both, (1) onshore and (2) offshore systems with the effects of ice and tide is included. These weather conditions further contribute to the uncertainties in the model, most importantly, in the values of tower equivalent mass, stiffness, and damping and increase the amplitude of the velocity of tip-tower vibrations at some particular frequencies, which creates greater mechanical fatigue. A novel control technique to attenuate such a mechanical fatigue is presented in the paper. It is based on the variation of the generator torque in the above rated wind speed region. The control strategy, designed by using Quantitative Feedback Theory (QFT), decreases the velocity of the nacelle movement due to the wind turbulences, thus reducing the associated mechanical fatigue. The new strategy is validated with a realistic nonlinear simulator under a set of different input scenarios and a Monte Carlo method for the uncertainty selection.


Sign in / Sign up

Export Citation Format

Share Document