scholarly journals Dynamic Blackout Probability Monitoring System for Cruise Ship Power Plants

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6598
Author(s):  
Victor Bolbot ◽  
Gerasimos Theotokatos ◽  
Rainer Hamann ◽  
George Psarros ◽  
Evangelos Boulougouris

Stringent environmental regulations and efforts to improve the shipping operations sustainability have resulted in designing and employing more complex configurations for the ship power plants systems and the implementation of digitalised functionalities. Due to these systems complexity, critical situations arising from the components and subsystem failures, which may lead to accidents, require timely detection and mitigation. This study aims at enhancing the safety of ship complex systems and their operation by developing the concept of an integrated monitoring safety system that employs existing safety models and data fusion from shipboard sensors. Detailed Fault Trees that model the blackout top event, representing the sailing modes of a cruise ship and the operating modes of its plant, are employed. Shipboard sensors’ measurements acquired by the cruise ship alarm and monitoring system are integrated with these Fault Trees to account for the acquired shipboard information on the investigated power plant configuration and its components operating conditions, thus, facilitating the estimation of the blackout probability time variation as well as the dynamic criticality assessment of the power plant components. The proposed concept is verified by using a virtual simulation environment developed in Matlab/Simulink. This study supports the dynamic assessment of the ship power plants and therefore benefits the decision-making for enhancing the plant safety during operations.

2020 ◽  
pp. 245-250
Author(s):  
А.В. Балакин ◽  
А.Н. Дядик ◽  
А.С. Кармазин ◽  
М.В. Ларионов ◽  
С.Н. Сурин

В статье представлена упрощенная имитационная модель, описывающая работу топливного процессора в составе воздухонезависимой энергетической установки. Рассмотрено блочное моделирование отдельных составляющих ВНЭУ, в частности, высокотемпературного реактора, блока очистки газа от серы и сажи, первого и второго блоков конверсии, сепаратора и регулирующего клапана. Имитационные модели отдельных элементов ВНЭУ позволяют рассчитывать динамические характеристики энергоустановки и создавать алгоритмы управления клапанами подачи водорода в переходных режимах. Теоретические зависимости для определения массовых расходов реагентов, температур и давлений приведены для идеальных газов с целью представления в среде LabVIEW с учетом полученных экспериментальных данных для проведения расчета маневров по регулированию давления на заданных режимах работы ВНЭУ при различных условиях ее работы. The article presents a simplified simulation model that describes the operation of the fuel processor as part of an air-independent power plant. Block modeling of the individual components of an air-independent power plant, in particular, a high-temperature reactor, a unit for cleaning gas from sulfur and soot, the first and second conversion units, a separator, and a control valve, is considered. Simulation models of individual elements of an air-independent power plant allow you to calculate the dynamic characteristics of a power plant and create algorithms for controlling hydrogen supply valves in transient conditions. Theoretical dependencies for determining the mass flow rates of reagents, temperatures and pressures are given for ideal gases for the purpose of presentation in the LabVIEW environment, taking into account the obtained experimental data for the calculation of maneuvers for regulating pressure at specified operating modes of an air-independent power plant under various operating conditions. The results of the work are described extremely accurately and informatively. The main theoretical and experimental results, actual data, discovered relationships and regularities are presented.


Author(s):  
Дмитро Вікторович Коновалов ◽  
Роман Миколайович Радченко ◽  
Галина Олександрівна Кобалава ◽  
Сергій Георгійович Фордуй ◽  
Віктор Павлович Халдобін

The most common way to increase power and reduce fuel consumption by modern power plants is contact cooling of a gas or air flow by water injection. A promising development of this direction is to use aerothermopressor technologies. The use of heat air, which is compressed by the power plant compressors, accelerates the flow to a speed close to the sound one and almost instantaneous evaporation of injected water (the effect of thermo-gas-dynamic compression). It is important to determine the rational parameters of the organization of thermophysical and hydrodynamic processes when developing such technologies. In this case, one should be taken into account the appropriate development of the flow path design and a special software product. It is necessary to use methods and means to determine the optimal operating parameters of the power plant heat recovery systems. This paper presents a block diagram and an algorithm of a rational methodology for designing an aerothermopressor, which makes it possible to accurately determine the efficiency of using an aerothermopressor as part of a power plant (based on a gas turbine engine) for cooling cycle air, considering the peculiarities of operating modes in the flow path, as well as under various climatic operating conditions. The algorithm of a rational methodology for designing aerothermopressor technologies allows calculating the characteristics of equipment, systems, and circuit design solutions when used as part of a power plant: an electric generator; heat-using refrigerating machines (ejector refrigerating machines, absorption refrigerating machines); turbine generator or steam generator as part of a trigeneration unit or as part of a turbo-compound unit (power plants of marine vessels); recovery boiler of one or two pressures. Modeling the aerothermopressor-cooling system operation makes it possible to reveal the effectiveness of using such a system as part of a power plant and compare it with traditional methods of cooling and humidifying cycle air.


Author(s):  
A. G. Zhuravlev ◽  
M. V. Isakov

The high importance of optimizing the operation of quarry transport is confirmed by the leading share of its costs in the total cost of mining. The current direction of optimization is the development and implementation of digital technologies for processing complex data on the parameters of transport vehicles. The solution of the above issues should be based on the results of scientific research on the collection and processing of information. Developed a set of techniques to perform experimental measurements of working parameters of mining dump trucks as part of a special unit experiments, and long monitoring measurements. A set of equipment for performing experimental measurements, as well as its installation on a dump truck is presented. The data of experimental measurements and a methodical approach to their analysis are presented. In particular, it shows the identification of operating modes of the power plant and the construction of the load diagram, the identification of elements of the transport cycle, etc. The approach to substantiation of innovative designs of power plants adapted to the conditions of a particular quarry is shown on the example of calculated schedules of energy consumption and reserve of recovery of braking energy. The proposed hardware-methodical complex is a research model for the development of methods for automated data collection and processing in the formation of elements of digital mining production.


Author(s):  
G. Hariharan ◽  
B. Kosanovic

The ability of modern power plant data acquisition systems to provide a continuous real-time data feed can be exploited to carry out interesting research studies. In the first part of this study, real-time data from a power plant is used to carry out a comprehensive heat balance calculation. The calculation involves application of the first law of thermodynamics to each powerhouse component. Stoichiometric combustion principles are applied to calculate emissions from fossil fuel consuming components. Exergy analysis is carried out for all components by the combined application of the first and second laws of thermodynamics. In the second part of this study, techniques from the field of System Identification and Linear Programming are brought together in finding thermoeconomically optimum plant operating conditions one step ahead in time. This is done by first using autoregressive models to make short-term predictions of plant inputs and outputs. Then, parameter estimation using recursive least squares is used to determine the relations between the predicted inputs and outputs. The estimated parameters are used in setting up a linear programming problem which is solved using the simplex method. The end result is knowledge of thermoeconomically optimum plant inputs and outputs one step ahead in time.


2012 ◽  
Vol 260-261 ◽  
pp. 103-106
Author(s):  
Yi Chun Lin ◽  
Yung Nane Yang

The ripples of the tsunami crisis in Japan triggered introspections of nuclear plant safety issues in the worldwide. Many countries have claimed the suspension of nuclear power plants. However, some countries such as Taiwan, under nearly 99% energy is exported, the disasters force government and citizen to face the importance of nuclear safety, especially the neighborhoods nearby the nuclear power plants. We have to face the nuclear safety since there is no other alternative energy presently. The 3rd nuclear power plant located in the south of Taiwan, which has the same geographic features with Fukushima, Japan. Presently, there is no precedent in Taiwan of precaution and rescue team and civil supervised mechanic on nuclear security issue. This paper will review according to transparent information, public participation and cross-organization cooperation to propose the execution and work division principles, including information monitor, educational propagation, hide and evacuation, emergence aid and care, rear and refuge service. The ultimate target is to establish self-governance inside nearby neighborhood to confront nuclear disaster at the critical moment.


Author(s):  
Erik Rosado Tamariz ◽  
Norberto Pe´rez Rodri´guez ◽  
Rafael Garci´a Illescas

In order to evaluate the performance of new turbo gas power plants for putting in commercial operation, it was necessary to supervise, test and, if so the case, to approve the works of commissioning, operational and acceptance of all equipments and systems that constitute the power plant. All this was done with the aim of guaranteeing the satisfactory operation of these elements to accomplish the function for which they were developed. These activities were conducted at the request of the customer to confirm and observe that the evidence of the tests was carried out according to the specifications and international regulations. The putting into commercial operation activities were done in collaboration with the supplier and manufacturer of equipment, the client and the institution responsible for certification and approval of the plant. All this in a logical and chronological order for the sequence of commissioning tests, operation and acceptance. Commissioning tests were carried out on-site at normal operating conditions, according to the design and operation needs of each power plant of a group of 14. Once the commissioning tests were completely executed and in a satisfactory manner, operational tests of the plants were developed. This was done by considering that they must operate reliable, stable, safe and automatically, satisfying at least, one hundred hours of continuous operation at full load. After evaluating the operational capacity of the machine, it was necessary to determinate the quality of the plant by carrying out a performance test. Finally, it was verified if every unit fulfills the technical requirements established in terms of heat capacity of the machine, noise levels and emissions. As a result of this process, it is guaranteed to the customer that the turbo gas power plants, their systems and equipments, satisfy the requirements, specifications and conditions in agreement with the supplier and manufacturers referring to the putting into commercial operation of the plant.


Author(s):  
Cesar Celis ◽  
Sergio Peralta ◽  
Walter Galarza

Abstract The influence of different power augmentation techniques used in gas turbines on the performance of simple cycle type power plants is assessed in this work. A computational model and tool realistically describing the performance of a typical simple cycle type power plant at design and off-design point conditions is initially developed. This tool is complemented with different models of power augmentation technologies. Finally, the whole model including both power plant and power augmentation techniques is used to analyze a case study involving a particular power plant in Peru. The results from the simulations of the specific power plant indicate that power output can be increased through all the evaluated power augmentation technologies. These results show indeed that technologies based on absorption refrigeration systems produce the largest gains in terms of power output (7.1%) and thermal efficiency (0.7%). Such results confirm the suitability of these systems for simple cycle type power plant configurations operating under hot and humid operating conditions as those accounted for here. From an economic perspective, considering the net present value as the key parameter defining the feasibility of a project in this category, power augmentation techniques based on absorption cooling systems result also the most suitable ones for the studied power plant. Power augmentation techniques environmental implications are also quantified in terms of CO2 emissions.


Author(s):  
P. S. Neporozhnii ◽  
A. K. Kirsh

This paper describes the operating conditions which form the basis for determining the various types of feed pump units needed to equip the main power plant equipment in the U.S.S.R. The principles upon which the feed pump groups are selected, according to the type of equipment installed in different power plants, are considered. The system diagrams and design features of the feed pumps are presented, together with descriptions of how they are driven.


Author(s):  
R. Chacartegui ◽  
D. Sa´nchez ◽  
J. A. Becerra ◽  
A. Mun˜oz ◽  
T. Sa´nchez

In this work, a tool to predict the performance of fossil fuel steam power plants under variable operating conditions or under maintenance operations has been developed. This tool is based on the Spencer-Cotton-Cannon method for large steam turbine generator units. The tool has been validated by comparing the predicted results at different loads with real operating data of a 565 MW steam power plant, located in Southern Spain. The results obtained from the model show a good agreement with most of the power plant parameters. The simulation tool has been then used to predict the performance of a steam power plant in different operating conditions such as variable terminal temperature difference or drain cooler approach of the feed-water heaters, or under maintenance conditions like a feed-water heater out of service.


Author(s):  
Mikhail Balzannikov

The article describes run-of-the-river hydroelectric power plants. The authors specify the importance of performing technical and economic calculations in justifying the large-sized units of the water-supplying channel of a run-of-the-river hydroelectric power plant: turbine pits and suction (discharge) pipes. The study shows that the amount of construction work and the total cost of building a hydroelectric power plant depend on the size of these water supply units. The research objective is to analyze the validity of establishing the main dimensions of the suction pipes for modern technical and economic conditions. The researchers use the discounted income method. The calculations are performed for a hydroelectric power plant with an elbow suction pipe. The analysis of how the operating conditions of a hydroelectric power plant influence the savings of construction resources is carried out. The analysis shows that saving construction resources by reducing the length of the suction pipe is justified if the hydroelectric power plamt is designed to work only at peak power loads. For hydroelectric power plants operating at semi-peak or base power loads, the additional construction costs would be appropriate if leading to the decrease in pressure loss and to the increase in electricity generation.


Sign in / Sign up

Export Citation Format

Share Document