scholarly journals PVcheck—A Software to Check Your Photovoltaic System

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6757
Author(s):  
Markus Rinio

Having a photovoltaic (PV) system raises the question of whether it runs as expected. Measuring its energy yield takes a long time and the result still contains uncertainties from varying weather conditions and possible shading of the modules. Here, a free software PVcheck to measure the peak power of the system is announced, using the power data of a single sunny day. The software loads a data file of the generated power as a function of time from this day. This data file is provided by typical inverters. The software then simulates this power curve using known parameters like angle and location of the PV system. The assumed peak power of the simulation can then be adjusted so that the simulated curve matches the measured one. The software runs under Microsoft Windows™ and makes use of the free library pvlib python. The simulation can be refined by importing weather data like temperature, wind speed, and insolation. Furthermore, curves describing the nominal module efficiency as a function of the illumination intensity as well as the power-dependent inverter efficiency can be included in the simulation. First results reveal a good agreement of the simulation with experimental data. The software can be used to detect strong problems in PV systems after installation and to monitor their long-time operation.

Jordan has experienced a significant increase in both peak load and annual electricity demand within the last decade due to the growth of the economy and population. Photovoltaic (PV) system is one of the most popular renewable energy source in Jordan. PV system is highly nonlinear with unpredictable behavior since it is always subject to many external factors such as severe weather conditions, irradiance level, sheds, temperature, etc. This makes it difficult to maintain maximum power production around its operation ranges. In this paper, an intelligent technique is used to predict and identify the working ability of the PV system under different weather factors in Tafila Technical University (TTU) in Jordan. It helps in optimizing power productions for different operation points. The PV system in Tafila with size 1 MWp PV generated 5.4 GWh since 2017. It saves about € 1.5 million in three years. A real power data from the PV system and a weather data from world weather online site of TTU location are used in this study. Decision tree technique is employed to identify the relation between the output power and weather factors. The results show that the system accuracy is 82.01% during the training phase and 93.425 % on the validation set.


2020 ◽  
Vol 17 (1) ◽  
pp. 43
Author(s):  
Nor Zaini Zakaria ◽  
Hedzlin Zainuddin ◽  
Sulaiman Shaari ◽  
Ahmad Maliki Omar ◽  
Shahril Irwan Sulaiman

This aim of this paper is to evaluate the accuracy of long-term weather data models for performance prediction of grid-connected photovoltaic (GCPV) systems. The analyses were done for a 6-year old metal deck roof retrofitted GCPV system located in Shah Alam, Malaysia. The monthly and annual energy yield of the actual field data for three consecutive years were compared with the predicted yield using the long-term weather data models. These models were the Typical Meteorological Year (TMY), Model Year Climate (MYC), Microclimate data, and statistical Long-Term Mean for ground station data at Subang. The findings can be a reference for photovoltaic (PV) system designers on the range of accuracy when using the weather data models for performance predictions of GCPV system in Malaysia.


Author(s):  
Shubham Tiwari

Abstract: Grid connected rooftop PV systems are the most common form of solar energy utilization that helps home owners to reduce carbon footprint and save money in utility bills. This project focuses on the design and modelling of a 3KW residential PV system connected to a 240V single phase grid. The purpose of this study was to conduct an independent experiment on a photovoltaic system with microinverters, to determine their performance characteristics in shaded and unshaded conditions. The systems have fixed tilt angle and fixed azimuth angle. In order to analyse the performance of the systems, the Energy Yield, Performance Ratio, Capacity factor and Annual Energy have been used. This allowed to obtain reliable metrics even with different Irradiance values and different Peak Powers. In the conventional central inverters, several strings of PV modules are combined in order to achieve the power required from the inverter to operate. Strings are connected in parallel and then these strings are led to the inverter after running several meters of DC cables. These cables are often very thick and as a result are very expensive while at the same time, they add losses to the overall system. On the other hand, AC cables are much less expensive and they have fewer losses. A residential system was designed in SAM using specific weather data. The simulation results supported the fact that micro inverters perform well in both shaded and non-shaded conditions. A significant advantage of Micro Inverters is the avoidance of shading losses and mismatch among different PV technologies which consists a great challenge on PV installations. The String Inverter system produced an annual energy of 4763 kWh in the first year with no shading and 4286 kWh in the first year with shading losses. Keywords: Inverters, Photovoltaic cells, Photovoltaic systems, Solar energy, Solar panels.


2021 ◽  
Vol 260 ◽  
pp. 03007
Author(s):  
Guoping Huang ◽  
Hao Zhuang ◽  
Honglie Shen ◽  
Yashuai Jiang ◽  
Guan Sun ◽  
...  

Small space interconnection technology (SSIT) has been utilized in solar panels recently. The application of this technology can further increase the module efficiency. However, higher power decay after long-time operation may occur due to additional risk. Therefore, in this paper, damp heat (DH), thermal cycle (TC), UV irradiation and humidity freezing (HF) tests were utilized to study the weatherability performance of SSIT-based high-density solar panels fabricated with cells cut by two different techniques. The achieved data suggest that the novel high-density modules with small space between cells have good reliability in various weather conditions. The novel low-damage laser-induced cutting technique is beneficial for the improvement of module reliability.


2019 ◽  
Vol 10 (1) ◽  
pp. 201
Author(s):  
Azhan Ab. Rahman ◽  
Zainal Salam ◽  
Sulaiman Shaari ◽  
Mohd Zulkifli Ramli

Photovoltaic inverter conversion efficiency is closely related to the energy yield of a photovoltaic system. Usually, the peak efficiency (ηmax) value from the inverter data sheet is used, but it is inaccurate because the inverter rarely operates at the peak power. The weighted efficiency is a preferable alternative as it inherently considers the power conversion characteristics of the inverter when subjected to varying irradiance. However, since the weighted efficiency is influenced by irradiance, its value may not be appropriate for different climatic conditions. Based on this premise, this work investigates the non-suitability of the European weighted efficiency (ηEURO) for inverters installed in the Equatorial region. It utilizes a one year data from the Equatorial irradiance profile to recalculate the value of ηEURO (ηEURO_recal) and to compare it with the original ηEURO. Furthermore, a new weighted efficiency formula for the Equatorial climate (ηEQUA) is proposed. Validation results showed that calculated energy yield with ηEQUA closely matched the real energy yield of 3 kW system with only 0.16% difference. It is envisaged that the usage of ηEQUA instead of ηmax or ηEURO will results in a more accurate energy yield and return of investment calculations for PV systems installed in Equatorial regions.


2012 ◽  
Vol 517 ◽  
pp. 791-796
Author(s):  
Cheng Yao Wang ◽  
Yin Xu ◽  
Yao Ming Zhang ◽  
Yong Ming Hua

In this paper, a concentrating photovoltaic (CPV) system with low ratio was successfully developed. In the design of CPV concentrator, a quasi-parabolic reflector was adopted. With the research of basic optical mechanisms, a mathematic model was built with the corresponding program. In addition, the width of light spot was analyzed with considering the symmetry of tracking errors and glass deformation in manufacture to identify reasonable values. The system was designed with a reflector of 10 flat mirrors, which has a geometrical concentration ratio of 8.18 and a flux concentration ratio of 5. The concentrating photovoltaic system was investigated experimentally under the various weather conditions. The output voltage profile and the output power of the flat PV system and the CPV system were presented to analyze the concentration ratio and the electric power. And the influence of soiling was also discussed. The results showed that the performance of tracking system was good in a clear day. Compared to the flat cell with the same system, the electric power was nearly increased by 4-5 times.


Author(s):  
G Vaddikasulu , Meneni Saigeetha

Maximum power point techniques (MPPT) are used in photovoltaic system to make full utilization of PV array output power. The output power of PV array is always changing with weather conditions i.e., solar irradiation and atmospheric temperature. PV cell generates power by converting sunlight into electricity. The electric power generated is proportional to solar radiation. PV cell can generate around 0.5 to 0.8 volts. During cloudy weather due to varying insolation levels the output of PV array varies. The MPPT is a process which tracks the maximum power from array and by increasing the duty cycle of the DC-DC boost converter, the output voltage of the system is increased. This paper presents the cuckoo mppt technique for PV system along with SMC controller methods in grid connected photovoltaic (PV) systems for optimizing the solar energy efficiency


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yuan-Kang Wu ◽  
Chao-Rong Chen ◽  
Hasimah Abdul Rahman

The increasing use of solar power as a source of electricity has led to increased interest in forecasting its power output over short-time horizons. Short-term forecasts are needed for operational planning, switching sources, programming backup, reserve usage, and peak load matching. However, the output of a photovoltaic (PV) system is influenced by irradiation, cloud cover, and other weather conditions. These factors make it difficult to conduct short-term PV output forecasting. In this paper, an experimental database of solar power output, solar irradiance, air, and module temperature data has been utilized. It includes data from the Green Energy Office Building in Malaysia, the Taichung Thermal Plant of Taipower, and National Penghu University. Based on the historical PV power and weather data provided in the experiment, all factors that influence photovoltaic-generated energy are discussed. Moreover, five types of forecasting modules were developed and utilized to predict the one-hour-ahead PV output. They include the ARIMA, SVM, ANN, ANFIS, and the combination models using GA algorithm. Forecasting results show the high precision and efficiency of this combination model. Therefore, the proposed model is suitable for ensuring the stable operation of a photovoltaic generation system.


Author(s):  
Kaoru Furushima ◽  
Yutaka Nawata ◽  
Michio Sadatomi

A reasonable construction of photovoltaic (PV) system would be possible if the electrical output from the PV can be predicted accurately from weather data before the construction. The electrical output can be calculated theoretically from the voltage-current characteristics equation for a silicon solar cell, if the solar irradiance and the cell temperature are known. However, it is not easy to predict the cell temperature because it depends on several physical and environment factors; in particular, it is difficult to estimate a heat transfer from PV surface to surrounds. In this study, firstly, we confirmed that the electrical output can be predicted accurately by a modified equation of traditional voltage-current characteristic equation when the irradiance and the cell temperature are given. Secondly, we estimated the average heat transfer coefficient from PV surface as a function of wind speed using the experimental data on the PV system obtained in this study and compared it with three kinds of data in references. As a result, the estimated values agree with the references’ results in their accuracy of the data.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ramsha Iftikhar ◽  
Iftikhar Ahmad ◽  
Muhammad Arsalan ◽  
Neelma Naz ◽  
Naghmash Ali ◽  
...  

Photovoltaic (PV) system generates energy that varies with the variation in environmental conditions such as temperature and solar radiation. To cope up with the ever increasing demand of energy, the PV system must operate at maximum power point (MPP), which changes with load as well as weather conditions. This paper proposes a nonlinear backstepping controller to harvest maximum power from a PV array using DC-DC buck converter. A regression plane is formulated after collecting the data of the PV array from its characteristic curves to provide the reference voltage to track MPP. Asymptotic stability of the system is proved using Lyapunov stability criteria. The simulation results validate the rapid tracking and efficient performance of the controller. For further validation of the results, it also provides a comparison of the proposed controller with conventional perturb and observe (P&O) and fuzzy logic-based controller (FLBC) under abrupt changes in environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document