scholarly journals Hybrid Controller Based on LQR Applied to Interleaved Boost Converter and Microgrids under Power Quality Events

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6909
Author(s):  
Gerardo Humberto Valencia-Rivera ◽  
Ivan Amaya ◽  
Jorge M. Cruz-Duarte ◽  
José Carlos Ortíz-Bayliss ◽  
Juan Gabriel Avina-Cervantes

Renewable energy sources are an environmentally attractive idea, but they require a proper control scheme to guarantee optimal operation. In this work, we tune different controllers for an Interleaved Boost Converter (IBC) powered by a photovoltaic array using three metaheuristics: Genetic Algorithm, Particle Swarm Optimization, and Gray Wolf Optimization. We also develop several controllers for a second simulated scenario where the IBC is plugged into an existing microgrid (MG) as this can provide relevant data for real-life applications. In both cases, we consider hybrid controllers based on a Linear Quadratic Regulator (LQR). However, we hybridize it with an Integral action (I-LQR) in the first scenario to compare our data against previously published controllers. In the second one, we add a Proportional-Integral technique (PI-LQR) as we do not have previous data to compare against to provide a more robust controller than I-LQR. To validate our approach, we run extensive simulations with each metaheuristic and compare the resulting data. We focus on two fronts: the performance of the controllers and the computing cost of the solvers when facing practical issues. Our results demonstrate that the approach proposed for tuning controllers is a feasible strategy. The controllers tuned with the metaheuristics outperformed previously proposed strategies, yielding solutions thrice faster with virtually no overshoot and a voltage ripple seven times smaller. Not only this, but our controllers could correct some issues liaised to the IBC when it is plugged into an MG. We are confident that these insights can help migrate this approach to a more diverse set of MGs with different renewable sources and escalate it to real-life experiments.

2013 ◽  
Vol 694-697 ◽  
pp. 2933-2937
Author(s):  
Ji Ying Shi ◽  
Zi Man Wang

In order to improve the performance of photovoltaic generating system, an improved interleaved boost converter was used as Maximum Power Point Tracker (MPPT) to match the power with the load. Compared with the traditional boost converter, the advantage of improved interleaved boost converter is high step-up ratio, low input ripple current and improved reliability. Based on this topology, the MPPT control strategy of variable step size perturbation and observation (P&O) method is adopted, photovoltaic array can track the maximum power point by adjusting PWM duty ratio of the boost converter. The simulation results certify the correctness of theoretical analysis.


2017 ◽  
Vol 66 ◽  
pp. 425-436 ◽  
Author(s):  
Mohamed Bougrine ◽  
Mohammed Benmiloud ◽  
Atallah Benalia ◽  
Emmanuel Delaleau ◽  
Mohamed Benbouzid

2021 ◽  
Vol 11 (6) ◽  
pp. 2699
Author(s):  
Mohamad Norherman Shauqee ◽  
Parvathy Rajendran ◽  
Nurulasikin Mohd Suhadis

A hybrid proportional double derivative and linear quadratic regulator (PD2-LQR) controller is designed for altitude (z) and attitude (roll, pitch, and yaw) control of a quadrotor vehicle. The derivation of a mathematical model of the quadrotor is formulated based on the Newton–Euler approach. An appropriate controller’s parameter must be obtained to obtain a superior control performance. Therefore, we exploit the advantages of the nature-inspired optimization algorithm called Grey Wolf Optimizer (GWO) to search for those optimal values. Hence, an improved version of GWO called IGWO is proposed and used instead of the original one. A comparative study with the conventional controllers, namely proportional derivative (PD), proportional integral derivative (PID), linear quadratic regulator (LQR), proportional linear quadratic regulator (P-LQR), proportional derivative and linear quadratic regulator (PD-LQR), PD2-LQR, and original GWO-based PD2-LQR, was undertaken to show the effectiveness of the proposed approach. An investigation of 20 different quadcopter models using the proposed hybrid controller is presented. Simulation results prove that the IGWO-based PD2-LQR controller can better track the desired reference input with shorter rise time and settling time, lower percentage overshoot, and minimal steady-state error and root mean square error (RMSE).


Author(s):  
Ratan Lal ◽  
Aaron McKinnis ◽  
Dustin Hauptman ◽  
Shawn Keshmiri ◽  
Pavithra Prabhakar

AbstractIn this paper, we investigate the design of a safe hybrid controller for an aircraft that switches between a classical linear quadratic regulator (LQR) controller and a more intelligent artificial neural network (ANN) controller. Our objective is to switch safely between the controllers, such that the aircraft is always recoverable within a fixed amount of time while allowing the maximum time of operation for the ANN controller. There is a priori known safety zone for the LQR controller operation in which the aircraft never stalls, over accelerates, or exceeds maximum structural loading, and hence, by switching to the LQR controller just before exiting this zone, one can guarantee safety. However, this priori known safety zone is conservative, and therefore, limits the time of operation for the ANN controller. We apply reachability analysis to expand the known safety zone, such that the LQR controller will always be able to drive the aircraft back to the safe zone from the expanded zone (“recoverable zone") within a fixed duration. The “recoverable zone" extends the time of operation of the ANN controller. We perform simulations using the hybrid controller corresponding to the recoverable zone and observe that the design is indeed safe.


Author(s):  
Adireddy Ramesh ◽  
M. Siva Kumar ◽  
O. Chandra Sekhar

In present Electricity market Renewable Energy Sources (RES) are gaining much importance. The most common Renewable Energy Sources are Photo voltaic (PV), fuel cell (FC) and wind energy systems, out of these three PV systems PV system can implemented in most of the locations. Due to the power cuts and power disturbances in Distribution systems agriculture application is concentrated on PV based Energy system. The use of PV system is increasing day by day in agriculture application, due to their ease of control and flexibility. PV Electrification schemes also involves various subsidies in government national and international donors. Especially in Agriculture field by use of PV one can achieve higher subsidy. The output of PV system is low voltage DC to have high efficiency. The motors used in agriculture field are Induction Motors (IM) fed from Three phase AC supply, to boost the PV output we need a high voltage gain boost converter along with PWM inverter to Induction motor drive. Out of various DC-DC converter configurations interleaved boost converter is gaining much attention, due to its reduction in size and Electromagnetic Interference (EMI). In this work we are proposing a PV fed interleaved boost converter with PWM inverter for agriculture applications. The design process of interleaved boost converter is explain detail and compared with existing boost converter. A 10KW Power rating is choosing for the Induction motor drive and design calculations are carried out. A MATLAB/SIMULINK based model is developed for boost and interleaved boost converter and simulation results are presented, finally a scaled down hardware circuit design for interleaved boost converter and results are presented.


2020 ◽  
Author(s):  
Ibrahim K. Mohammed

Proportional Integral Derivative (PID) is the most popular controller that is commonly used in wide industrial applications due to its simplicity to realize and performance characteristics. This technique can be successfully applied to control the behavior of single-input single-output (SISO) systems. Extending the using of PID controller for complex dynamical systems has attracted the attention of control engineers. In the last decade, hybrid control strategies are developed by researchers using conventional PID controllers with other controller techniques such as Linear Quadratic Regulator (LQR) controllers. The strategy of the hybrid controller is based on the idea that the parameters of the PID controller are calculated using gain elements of LQR optimal controller. This chapter focuses on design and simulation a hybrid LQR-PID controller used to stabilize elevation, pitch and travel axes of helicopter system. An improvement in the performance of the hybrid LQR-PID controller is achieved by using Genetic Algorithm (GA) which, is adopted to obtain best values of gain parameters for LQR-PID controller.


2013 ◽  
Vol 133 (12) ◽  
pp. 2167-2175 ◽  
Author(s):  
Katsuhiko Fuwa ◽  
Satoshi Murayama ◽  
Tatsuo Narikiyo

Sign in / Sign up

Export Citation Format

Share Document