scholarly journals A Double-Bridge Channel Shape of a Membraneless Microfluidic Fuel Cell

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6973
Author(s):  
Ji-Hyun Oh ◽  
Muhammad Tanveer ◽  
Kwang-Yong Kim

A double-bridge shape is proposed as a novel flow channel cross-sectional shape of a membraneless microfluidic fuel cell, and its electrochemical performance was analyzed with a numerical model. A membraneless microfluidic fuel cell (MMFC) is a micro/nano-scale fuel cell with better economic and commercial viability with the elimination of the polymer electrolyte membrane. The numerical model involves the Navier–Stokes, Butler–Volmer, and mass transport equations. The results from the numerical model were validated with the experimental results for a single-bridge channel. The proposed MMFC with double-bridge flow channel shape performed better in comparison to the single-bridge channel shape. A parametric study for the double-bridge channel was performed using three sub-channel widths with the fixed total channel width and the bridge height. The performance of the MMFC varied most significantly with the variation in the width of the inner channel among the sub-channel widths, and the power density increased with this channel width because of the reduced width of the mixing layer in the inner channel. The bridge height significantly affected the performance, and at a bridge height at 90% of the channel height, a higher peak power density of 171%was achieved compared to the reference channel.

2021 ◽  
Vol 11 (12) ◽  
pp. 5597
Author(s):  
Hussein A. Z. AL-bonsrulah ◽  
Mohammed J. Alshukri ◽  
Ammar I. Alsabery ◽  
Ishak Hashim

Proton exchange membrane fuel cell (PEM-FC) aggregation pressure causes extensive strains in cell segments. The compression of each segment takes place through the cell modeling method. In addition, a very heterogeneous compressive load is produced because of the recurrent channel rib design of the dipole plates, so that while high strains are provided below the rib, the domain continues in its initial uncompressed case under the ducts approximate to it. This leads to significant spatial variations in thermal and electrical connections and contact resistances (both in rib–GDL and membrane–GDL interfaces). Variations in heat, charge, and mass transfer rates within the GDL can affect the performance of the fuel cell (FC) and its lifetime. In this paper, two scenarios are considered to verify the performance and lifetime of the PEM-FC using different innovative channel geometries. The first scenario is conducted by adopting a constant channel height (H = 1 mm) for all the differently shaped channels studied. In contrast, the second scenario is conducted by taking a constant channel cross-sectional area (A = 1 mm2) for all the studied channels. Therefore, a computational fluid dynamics model (CFD) for a PEM fuel cell is formed through the assembly of FC to simulate the pressure variations inside it. The simulation results showed that a triangular cross-section channel provided the uniformity of the pressure distribution, with lower deformations and lower mechanical stresses. The analysis helped gain insights into the physical mechanisms that lead to the FC’s durability and identify important parameters under different conditions. The model shows that it can assume the intracellular pressure configuration toward durability and appearance containing limited experimental data. The results also proved that the better cell voltage occurs in the case of the rectangular channel cross-section, and therefore, higher power from the FC, although its durability is much lower compared to the durability of the triangular channel. The results also showed that the rectangular channel cross-section gave higher cell voltages, and therefore, higher power (0.63 W) from the fuel cell, although its durability is much lower compared to the durability of the triangular channel. Therefore, the triangular channel gives better performance compared to other innovative channels.


Author(s):  
Mojtaba Parvizi Omran ◽  
Mousa Farhadi ◽  
Kurosh Sedighi

A 3D, single phase steady-state model has been developed for liquid feed direct methanol fuel cell. The model is implemented into the commercial computational fluid dynamics (CFD) software package FLUENT® v6.2, with its user-defined functions (UDFs). The continuity, momentum, and species conservation equations are coupled with electrochemical kinetics in the anode and cathode channel and MEA. For electro chemical kinetics, the Tafel equation is used at both the anode and cathode sides. Results are validated against DMFC experimental data with reasonable agreement and used to study the effects of cell temperature, channel depth, and channel width on polarization curve, power density and crossover rate. The results show that the increasing operational temperature, the limiting current density and peak of power density increase and subsequently crossover increases too. It is also shown that the increasing of channel width is a beneficial way for improving cell performance at a methanol concentration below 1 M.


Author(s):  
Shaolong Wang ◽  
Dingding Ye ◽  
Zhenfei Liu ◽  
Xun Zhu ◽  
Rong Chen ◽  
...  

2014 ◽  
Vol 592-594 ◽  
pp. 1672-1676 ◽  
Author(s):  
V. Lakshminarayanan ◽  
P. Karthikeyan ◽  
M. Muthukumar ◽  
A.P. Senthil Kumar ◽  
B. Kavin ◽  
...  

The Proton Exchange Membrane (PEM) Fuel Cell performance not only depends on the operating parameters like temperature, pressure, the stoichiometric ratio of reactants, relative humidity and back pressure on anode and cathode flow channels, but it also depends on design parameters like channel width to rib width, channel depth and number of passes on the flow channel. In this paper numerical analysis were carried out with six different cross-sections of the channel, namely square, triangle, parallelogram 14o, parallelogram 26o, trapezium and inverted trapezium of 1.25 cm2active area with a constant cross sectional area of 0.01 cm2of single pass PEM fuel cell. The model was created and simulated under various pressures and temperature with a constant mass flow rate by using fluent CFD and the influence of the single pass flow channel on the performance of PEM fuel cell has been investigated.


Micromachines ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 822
Author(s):  
Muhammad Tanveer ◽  
Kwang-Yong Kim

A laminar flow micro fuel cell comprising of bridge-shaped microchannel is investigated to find out the effects of the cross-section shape of the microchannel on the performance. A parametric study is performed by varying the heights and widths of the channel and bridge shape. Nine different microchannel cross-section shapes are evaluated to find effective microchannel cross-sections by combining three bridge shapes with three channel shapes. A three-dimensional fully coupled numerical model is used to calculate the fuel cell’s performance. Navier-Stokes, convection and diffusion, and Butler-Volmer equations are implemented using the numerical model. A narrow channel with a wide bridge shape shows the best performance among the tested nine cross-sectional shapes, which is increased by about 78% compared to the square channel with the square bridge shape.


2014 ◽  
Vol 97 ◽  
pp. 1534-1542 ◽  
Author(s):  
M. Muthukumar ◽  
P. Karthikeyan ◽  
M. Vairavel ◽  
C. Loganathan ◽  
S. Praveenkumar ◽  
...  

2018 ◽  
Vol 54 (2) ◽  
pp. 192-195 ◽  
Author(s):  
Cauê A. Martins ◽  
Omar A. Ibrahim ◽  
Pei Pei ◽  
Erik Kjeang

Glycerol/bleach flow-through microfluidic fuel cells are presented.


Author(s):  
Isaac B. Sprague ◽  
Prashanta Dutta

A 2D numerical model is developed for a laminar flow fuel cell considering ion transport and the electric double layer around the electrodes. The Frumkin-Butler-Volmer equation is used for the fuel cell kinetics. The finite volume method is used to form algebraic equations from governing partial differential equations. The numerical solution was obtained using Newton’s method and a block TDMA solver. The model accounts for the coupling of charged ion transport with the electric field and is able to fully resolve the diffuse regions of the electric double layer in both the stream-wise and cross-channel directions. Different operating phenomena, such as laminar flow separation and the development of the depletion boundary layers and electric double layers are obtained. These numerical results demonstrate the model’s ability to capture the complex behavior of a microfluidic fuel cell which has been ignored in previous 1D models.


2014 ◽  
Vol 783-786 ◽  
pp. 1698-1703
Author(s):  
Hironori Nakajima

An anode-supported honeycomb solid oxide fuel cell can work with high power density and improve thermo-mechanical durability at high temperatures. We have thus fabricated the honeycomb cell with an electrolyte layer of 8YSZ on an anode honeycomb substrate of Ni/8YSZ. The cathode layer is LSM-YSZ composite. Current-voltage and current-power density characteristics of the cells having different anode and cathode flow channel configurations are measured under different hydrogen flow rates. We also evaluate the hydrogen mole fraction distributions in the honeycomb cell using finite element method, and discuss appropriate anode and cathode flow channel configurations. The present study is a starting point of developing an anode-supported honeycomb cell for cell stacks assembled with multiple and large scale honeycomb cells which can achieve high efficiency flow channel and current collecting configurations, and enhanced thermo-mechanical durability.


Sign in / Sign up

Export Citation Format

Share Document