scholarly journals Dependence of the Equivalent Circulation Density of Formate Drilling Fluids on the Molecular Mass of the Polymer Reagent

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7639
Author(s):  
Ekaterina Leusheva ◽  
Valentin Morenov ◽  
Tianle Liu

Construction of offshore gas wells is characterized by increased requirements for both the technological process in general and the technological parameters of drilling fluids in particular. Parameters and properties of the used drilling muds must meet a large number of requirements. The main one is the preservation of the permeability of the reservoirs, in addition to the environmental and technological concerns. At the same time, pressures in the productive formation at offshore fields are often high; the anomaly coefficient is 1.2 and higher. The use of barite in such conditions can lead to contamination of the formation and a decrease in future well flow rates. In this regard, the development and study of the compositions for weighted drilling muds is necessary and relevant. The paper presents investigations on the development of such a composition based on salts of formic acid (formates) and evaluates the effect of the molecular weight of the polymer reagent (partially hydrolyzed polyacrylamide) on the equivalent circulation density of the drilling fluid. The result of the work is a formate-based high-density drilling mud with no barite added. Application of such a mud will preserve the permeability of the productive formation.

Fluids ◽  
2021 ◽  
Vol 6 (9) ◽  
pp. 327
Author(s):  
Ekaterina Leusheva ◽  
Nataliia Brovkina ◽  
Valentin Morenov

Drilling fluids play an important role in the construction of oil and gas wells. Furthermore, drilling of oil and gas wells at offshore fields is an even more complex task that requires application of specialized drilling muds, which are non-Newtonian and complex fluids. With regard to fluid properties, it is necessary to manage the equivalent circulation density because its high values can lead to fracture in the formation, loss of circulation and wellbore instability. Thus, rheology of the used drilling mud has a significant impact on the equivalent circulation density. The aim of the present research is to develop compositions of drilling muds with a low solids load based on salts of formate acid and improve their rheological parameters for wells with a narrow drilling fluid density range. Partially hydrolyzed polyacrylamide of different molecular weights was proposed as a replacement for hydrolized polyacrylamide. The experiment was conducted on a Fann rotary viscometer. The article presents experimentally obtained data of indicators such as plastic viscosity, yield point, nonlinearity index and consistency coefficient. Experimental data were analyzed by the method of approximation. Analysis is performed in order to determine the most suitable rheological model, which describes the investigated fluids’ flow with the least error.


Author(s):  
Winarto S. ◽  
Sugiatmo Kasmungin

<em>In the process of drilling for oil and gas wells the use of appropriate drilling mud can reduce the negative impacts during ongoing drilling and post-drilling operations (production). In general, one of the drilling muds that are often used is conventional mud type with weighting agent barite, but the use of this type of mud often results in skin that is difficult to clean. Therefore in this laboratory research an experiment was carried out using a CaCO3 weigting agent called Mud DS-01. CaCO3 is widely used as a material for Lost Circulation Material so that it is expected that using CaCO3 mud will have little effect on formation damage or at least easily cleaned by acidizing. The aim of this research is to obtain a formula of mud with CaCO3 which at least gives formation damage. Laboratory experiments on this drilling mud using several mud samples adjusted to the property specifications of the mud program. Mud sample consists of 4, namely using super fine, fine, medium, and conventional CaCO3. First measuring mud properties in each sample then testing the filter cake breaker, testing the initial flow rate using 200 ml of distilled water and a 20 micron filter disk inserted in a 500 ml HPHT cell then assembled in a PPA jacket and injecting a pressure of 100 psi. The acidification test was then performed using 15% HCL and then pressured 100 psi for 3 hours to let the acid work to remove the cake attached to the filter disk (acidizing). Laboratory studies are expected which of these samples will minimize the formation damage caused by drilling fluids.</em>


Author(s):  
Jonathan Kühne ◽  
Frederic Güth ◽  
Heike Strauß ◽  
Yvonne Joseph ◽  
Pál Árki

Modern drill strings for the exploration of oil and gas are equipped with a variety of sensor carrying devices such as Measurement While Drilling (MWD), Logging While Drilling (LWD), and Formation Testing While Drilling (FTWD). These devices generate a large amount of downhole data, such as the orientation of the well, drilling parameters e.g. weight on bit and torque, and formation properties. Appropriate telemetry systems are included in the drill string to transfer relevant downhole data in real time to the surface. Other data is stored in memories downhole for subsequent evaluation. However, drilling fluid properties are still monitored at the surface and their behavior under borehole conditions is predicted with hydraulic models. Commercial solutions for a direct downhole measurement of various drilling fluid parameters are rare, though they would increase drilling process safety and the knowledge about the behavior of drilling fluids under real bottomhole conditions. The pH has a significant influence on the properties of water-based muds and plays a role in the chemistry of oil-based muds as the water cut in the emulsion increases. Commercial pH-sensing devices, such as the glass electrode, and optical sensors are not appropriate for the pH measurement under bottomhole conditions. Fragility, the insufficient degree of miniaturization, the low temperature and pressure resistance due to the liquid reference electrolyte, and phenomena such as the alkaline error are certain drawbacks of glass electrodes. Often optical sensors often will not capture the whole pH scale and require the medium to be at least slightly transparent for light. The usage of pH-sensors based on EIS (electrolyte-isolator-semiconductor) structures is a possible application of chemical sensors for drilling fluid monitoring under in situ borehole conditions. This paper presents results from a study on the behavior of an EIS structure as a pH sensitive electrode measured vs. a commercial Ag/AgCl reference electrode in comparison with a commercial glass electrode. EIS structures are capacitive pH sensors where the sensing layer is generally a metal oxide on a semiconductor substrate. Measurements in basic drilling muds were conducted under constant temperature and atmospheric pressure while the drilling mud was steadily stirred. The mud was titrated from alkaline to acidic conditions with hydrochloric acid and the pH was measured after potential equilibration at the electrodes. The results show a general feasibility for the usage of the proposed sensor. There are still certain challenges to be overcome in the development of a robust and reliable pH-sensing device for complex fluids, such as drilling muds under high pressure/high temperature (HP/HT) conditions.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ashraf Ahmed ◽  
Salaheldin Elkatatny ◽  
Saad Al-Afnan

Biodiesel, referred to as the monoalkyl ester of long-chain fatty acid ester that is synthesized by the complete transesterification of triglycerides, has captured the attention of drilling researchers attributing to its magnificent characteristics such as the high flash point, excellent lubricity, nontoxicity, high biodegradability, and abundant feedstock resources, which make it ecofriendly and technically and economically feasible for a sustainable drilling operation. There are several studies that reported and documented the usage of biodiesel in drilling fluids on laboratory and field scales. In this paper, the production and the key physical and chemical properties of biodiesel are thoroughly reviewed. Moreover, the applications of biodiesel in drilling muds either as base fluids or additives were comprehensively surveyed. The literature review revealed that the challenges of biodiesel applications in drilling mud systems are related to its chemical reactivity and adverse interactions with some additives, along with its performance deficiency at temperature above 120°C. Therefore, further investigation on temperature stability and additive compatibility is recommended. In addition, as a new approach, it is recommended to study the potentiality of using crude waste oils in drilling mud formulations. The lessons learned and recommendations stated in this paper will assist in enhancing the proved use of biodiesel and drilling fluid optimization.


Nafta-Gaz ◽  
2021 ◽  
Vol 77 (3) ◽  
pp. 152-163
Author(s):  
Bartłomiej Jasiński ◽  

Drilling deep holes or drilling to provide access to thermal waters places increasingly high demands on the properties of the drilling muds. Due to the very high temperature, it may be difficult to maintain the appropriate rheology of the drilling fluid during drilling, especially when an inflow of highly mineralized brines occurs. High temperatures significantly reduce the effectiveness of most of the polymeric agents currently used in the drilling muds technology, in extreme cases causing complete and irreversible damage to their structure. Polymers with ether bonds, which include starches and cellulose, are the most vulnerable. Based on the literature data, it can be concluded that the disadvantages of these polymers can be effectively compensated by the addition of synthetic polymers, e.g. sulfonated polymers. Another direction in improving the thermal resistance of drilling muds indicated in the literature is the use of carbon nanoparticles: graphene flakes and nanotubes. The article presents an analysis of the possibilities of improving thermal stability of drilling muds by using chemical agents that allow to maintain appropriate rheological and structural parameters and filtration at temperatures up to 130°C. During the tests, three types of chemicals were added to the polymer-potassium drilling mud at different concentrations. The impact of these modifications on technological parameters of the drilling mud was tested. Then, samples modified by the addition of selected agents were exposed to the temperature of 130°C for a period of 24 hours. After this time, the samples were cooled to 20°C, then their technological parameters were measured and compared with the results obtained before aging at high temperature, and based on the obtained results, the effectiveness of individual agents was assessed. Among the agents tested to protect drilling mud against the adverse effects of high temperature, the most beneficial effect was shown by potassium formate in combination with PoliAMPS.


2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Osei H

High demand for oil and gas has led to exploration of more petroleum resources even at remote areas. The petroleum resources are found in deeper subsurface formations and drilling into such formations requires a well-designed drilling mud with suitable rheological properties in order to avoid or reduce associated drilling problems. This is because rheological properties of drilling muds have considerable effect on the drilling operation and cleaning of the wellbore. Mud engineers therefore use mud additives to influence the properties and functions of the drilling fluid to obtain the desired drilling mud properties especially rheological properties. This study investigated and compared the impact of barite and hematite as weighting agents for water-based drilling muds and their influence on the rheology. Water-based muds of different concentrations of weighting agents (5%, 10%, 15% and 20% of the total weight of the drilling mud) were prepared and their rheological properties determined at an ambient temperature of 24ᵒC to check their impact on drilling operation. The results found hematite to produce higher mud density, plastic viscosity, gel strength and yield point when compared to barite at the same weighting concentrations. The higher performance of the hematite-based muds might be attributed to it having higher specific gravity, better particle distribution and lower particle attrition rate and more importantly being free from contaminants. The water-based muds with hematite will therefore be more promising drilling muds with higher drilling and hole cleaning efficiency than those having barite.


2007 ◽  
Vol 4 (1) ◽  
pp. 103 ◽  
Author(s):  
Ozcan Baris ◽  
Luis Ayala ◽  
W. Watson Robert

The use of foam as a drilling fluid was developed to meet a special set of conditions under which other common drilling fluids had failed. Foam drilling is defined as the process of making boreholes by utilizing foam as the circulating fluid. When compared with conventional drilling, underbalanced or foam drilling has several advantages. These advantages include: avoidance of lost circulation problems, minimizing damage to pay zones, higher penetration rates and bit life. Foams are usually characterized by the quality, the ratio of the volume of gas, and the total foam volume. Obtaining dependable pressure profiles for aerated (gasified) fluids and foam is more difficult than for single phase fluids, since in the former ones the drilling mud contains a gas phase that is entrained within the fluid system. The primary goal of this study is to expand the knowledge-base of the hydrodynamic phenomena that occur in a foam drilling operation. In order to gain a better understanding of foam drilling operations, a hydrodynamic model is developed and run at different operating conditions. For this purpose, the flow of foam through the drilling system is modeled by invoking the basic principles of continuum mechanics and thermodynamics. The model was designed to allow gas and liquid flow at desired volumetric flow rates through the drillstring and annulus. Parametric studies are conducted in order to identify the most influential variables in the hydrodynamic modeling of foam flow. 


2021 ◽  
Author(s):  
Raymond Saragi ◽  
Mohammad Husien ◽  
Dalia Salim Abdullah ◽  
Ryan McLaughlin ◽  
Ian Patey ◽  
...  

Abstract A study was carried out to examine formation damage mechanisms caused by drilling fluids in tight reservoirs in several onshore oil fields in Abu Dhabi. Three phases of compatibility corefloods were carried out to identify potential to improve hydrocarbon recovery and examine reformulated/alternate drilling muds and treatment fluids. Interpretation was aided by novel Nano-CT quantifications and visualisations. The first phase examined the current drilling muds and showed inconsistent filtrate loss control alongside high levels of permeability alteration. These alterations were caused by retention of drilling mud constituents in the near-wellbore and incomplete clean-up of drilling mud-cakes. Based upon these results, reformulated and alternate drilling muds were examined in Phase 2, and there was a positive impact upon both filtrate loss and permeability, although the Nano-CT quantifications and visualisations showed that drilling mud constituents were still having an impact upon permeability. Candidate treatment fluids were examined in Phase 3, with all having a positive impact and the best performance coming from 15% HCl and an enzyme-based treatment. The interpretative tools showed that these treatments had removed drilling mud-cakes, created wormholes, and bypassed the areas where constituents were retained. The compatibility corefloods on tight reservoir core, alongside high-resolution quantifications and visualisations, therefore identified damaging mechanisms, helped identify potential to improve hydrocarbon recovery, and identify treatment fluid options which could be used in the fields.


Author(s):  
Bunyami Shafie ◽  
Lee Huei Hong ◽  
Phene Neoh Pei Nee ◽  
Fatin Hana Naning ◽  
Tze Jin Wong ◽  
...  

Drilling mud is a dense, viscous fluid mixture used in oil and gas drilling operations to bring rock cuttings to the earth's surface from the boreholes as well as to lubricate and cool the drill bit. Water-based mud is commonly used due to its relatively inexpensive and easy to dispose of. However, several components and additives in the muds become increasingly cautious and restricted. Starch was introduced as a safe and biodegradable additive into the water-based drilling fluid, in line with an environmental health concern. In this study, the suitability of four local rice flours and their heat moistures derivatives to be incorporated in the formulation of water-based drilling fluid was investigated. They were selected due to their natural amylose contents (waxy, low, intermediate, and high). They were also heat moisture treated to increase their amylose contents. Results showed that the addition of the rice flours into water-based mud significantly reduced the density, viscosity, and filtrate volume. However, the gel strength of the mud was increased. The rice flours, either native or heat moisture treated, could serve as additives to provide a variety of low cost and environmentally friendly drilling fluids to be incorporated and fitted into different drilling activity.


2018 ◽  
Vol 71 ◽  
pp. 00013
Author(s):  
Sławomir Wysocki ◽  
Magdalena Gaczoł ◽  
Marta Wysocka

While drilling through clay rocks using water-based mud, number of challenges need to be faced in view of hydration and swelling of this type of rock. Those phenomena consist in the fact, that clay mineral grows in volume due to water contact. In order to limit hydration phenomenon, for clay rocks drilling are used drilling muds with addition of chemical agents called hydration inhibitors. The article describes studies, which resulted in development of new formula of drilling mud with addition of a new short-chained amino polymer developed in Drilling, Oil and Gas Faculty AGH-UST Krakow. For the developed mud, tests of technological parameters were conducted according to API RP 13B-1 as well as specialist examinations: linear swelling of Miocene shale and clay rock disintegration. Studies also consists of syntheses of polyampholyte and short-chained cationic polymer. Based on performed studies, it was found that studied mud is characterized by good and easy to regulate technological parameters as well as effective inhibition of hydration, swelling and disintegration of clay rocks.


Sign in / Sign up

Export Citation Format

Share Document