scholarly journals Self-Consumption and Self-Sufficiency Improvement for Photovoltaic System Integrated with Ultra-Supercapacitor

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7888
Author(s):  
Qusay Hassan ◽  
Marek Jaszczur

This research study uses a computer simulation based on real input data to examine the impact of a supercapacitor module working as a fast response energy storage unit in renewable energy systems to increase energy self-consumption and self-sufficiency. The evaluated system includes a photovoltaic system with a capacity of 3.0 kWp and between 0 and 5 supercapacitor units with a capacity of 500 F per module. The study was carried out using experimental data for electrical load, solar irradiance, and ambient temperature for the year 2020, with a 1 min temporal resolution. The daily average ambient temperature was 10.7 °C, and the daily average solar irradiance was 3.1 kWh/m2/day. It is assumed that the supercapacitor could only be charged from a photovoltaic system using renewable energy and not from the grid. The simulation results showed that using the supercapacitors to feed the short and large peaks of the electrical load significantly increases energy self-consumption and self-sufficiency. With only five supercapacitor modules, yearly energy self-sufficiency increases from 28.09% to 40.77%.

2021 ◽  
Vol 39 (1) ◽  
pp. 1-11
Author(s):  
Valeria Todeschi ◽  
Paolo Marocco ◽  
Guglielmina Mutani ◽  
Andrea Lanzini ◽  
Massimo Santarelli

In Europe, 70% of citizens live in urban areas and consume around 75% of the primary energy supply. In order to reduce the impact of energy consumption and improve the competitiveness of local energy systems, Energy Communities may help to address the challenges of urban sustainability and energy security through local energy production and self-consumption. Solar, biomass and wind are the main sources of renewable energy that are generally used in cities. However, not all the sources available in urban environment are usable, due to the limited availability, or other technical or non-technical limits and constraints. In order to promote renewable energy technologies in buildings it is necessary to consider architectural, cultural, energy, technical and economic feasibility. This work defines a methodology for the optimal design of grid connected PV-battery systems in urban environments. The model was applied to two districts located in the city of Turin with the aim of evaluating the technical feasibility of combining multiple residential users at city level. The purpose of this work is to promote self-consumption and self-sufficiency from the network, using the integration of solar energy with PV-battery systems, and to reduce electrical losses in favor of both the single user and the distribution system. Results show that different values of self-sufficiency and self-consumption can be reached depending on the shape and dimension of each building. It was shown that it is possible to satisfy the current requirements to become an Energy Community in an urban environment with good levels of self-sufficiency.


Author(s):  
S.M. Sajed Sadati ◽  
Kristen S. Cetin

Gate electrification provides electricity and preconditioned air to stationary aircraft at airport gates as an alternative to the use of auxiliary power units. This includes a preconditioned air unit (PCA) and a ground power unit (GPU). This study aims to explore the impact of utilizing these units on the electricity demand of airports and analyzes the associated costs for both the cases of purchasing the electricity from a utility following a typical large commercial rate structure, and participating in the wholesale electricity market. The possibility of benefiting from solar energy to supply this electricity demand is also examined. The demand for gate electrification was measured at a gate at Des Moines International Airport in Iowa, U.S.A., and combined with other data including weather conditions and aircraft types to identify significant explanatory variables for electricity demand. This analysis revealed that ambient temperature is the main PCA demand predictor while aircraft type is the main factor driving the GPU demand. A linear regression model was developed to estimate the PCA electricity demand based on the ambient temperature. For the GPU, the typical demand was used based on aircraft type. This analysis shows that gate electrification used across all gates can contribute to up to 87% of the measured peak demand of the airport; the cost of participating in the wholesale market would be 57% less than following the current large commercial rate structure, and the airport can benefit from installing a photovoltaic system if the surplus electricity is utilized.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4353 ◽  
Author(s):  
Jie Deng ◽  
Xiaohan Liu ◽  
Guofu Zhai

Power transmission and protection of power electronics–electromagnetic actuators are crucial parts in renewable energy systems (energy management of photovoltaic, wind power, hybrid and electric vehicles). Consistency optimization of electromagnetic actuators has attracted extensive attention from corporations in competitive markets. Robust design has been widely applied for reducing the influence of uncertainties in the manufacturing process to improve the consistency of product quality. However, the cost factors of the actual manufacturing process are not fully considered in state-of-art methods. Although the consistency has been improved, the optimization scheme may not be optimal from the perspective of engineering applications, because unnecessary cost increments may be produced. In this paper, an application-oriented robust design method for consistency optimization is proposed. The impact of tolerance values on quality loss and manufacturing cost can be considered simultaneously to guide the tolerance optimization process. Thus, the optimal solution of total loss is obtained by optimizing the quality fluctuation to the design objective with the minimum increment of manufacturing cost. An example of the consistency optimization of an electromagnetic actuator used in the photovoltaic system is presented to illustrate the procedure and verify the effectiveness of the proposed method.


2012 ◽  
Vol 721 ◽  
pp. 185-190 ◽  
Author(s):  
Emmanuel S. Karapidakis ◽  
Antonis G. Tsikalakis ◽  
Yiannis A. Katsigiannis ◽  
Marios Moschakis

In this paper, the impact of high wind power and photovoltaics penetration on the dynamic behavior of an island power system like one operates in Crete is investigated. Several simulations were performed leading to the fact that it is possible to achieve higher level of renewable energy sources penetration without significant dynamic security problems, if power units spinning reserve exists and the corresponding control systems have a sufficiently fast response.


2015 ◽  
Vol 734 ◽  
pp. 787-790
Author(s):  
Florin Dragomir ◽  
Otilia Elena Dragomir ◽  
Sergiu Stelian Iliescu ◽  
Veronica Stefan

This paper proposes an intelligent controller based on fuzzy logic, capable to ensure to the networks with distributed renewable energy generation, a high performance in functioning and in concordance with the latest demands of triple performance strategies. It is a solution to the identified problem of the photovoltaic systems: the low efficiency of the energy transfer between the storage unit and photovoltaic module, dues to the appearance of the hydrogenating phenomena. An increasing value of the energy available to users of the power system is expected as results of the implementation of the proposed intelligent load device.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4165
Author(s):  
Nicola Franzoi ◽  
Alessandro Prada ◽  
Sara Verones ◽  
Paolo Baggio

The European Union, in accordance with its decarbonization objectives, has enacted the Directive (EU) 2018/2001 and subsequently the Directive (EU) 2019/944 that legally recognizes and regulates the formation of citizen energy communities. These are believed to be key enablers for reducing buildings’ carbon footprint by allowing for a wider diffusion of on-site renewable energy generation and by maximizing renewable energy self-consumption. In this study, the benefits of the energy community are assessed through simulations of average Italian buildings of various sizes, different energy efficiency levels, equipped with a photovoltaic system and a heat pump-driven heating system, and located in heating-dominated climates. The work focuses on energy communities both at the apartment scale—i.e., in a multi-family building—and at the building scale—i.e., in a neighborhood. The net energy consumption, the self-consumption, and the self-sufficiency of all the possible energy communities obtainable by combining the different buildings are compared to the baseline case that is represented by the absence of energy sharing between independent building units. The energy community alone at both the building-scale and the neighborhood-scale increases self-consumption by up to 5% and reduces net energy consumption by up to 10%. However, when the energy community is combined with other maximization strategies such as demand-side management and rule-based control, self-consumption can be raised by 15%. These results quantify the lower bound of the achievable self-consumption in energy communities, which, in the rush towards climate neutrality, and in light of these results, could be considered among the solutions for rationalizing the energy consumption of buildings.


2015 ◽  
Vol 9 (4) ◽  
pp. 90
Author(s):  
Juan Ernesto Wyss Porras ◽  
Sususmu Shimada ◽  
Jun Yoshino ◽  
Tomonao Kobayashi

The impact of the installation of a large-scale photovoltaic (PV) system to the electric power grid management is analyzed numerically in this series of works. In this part 1, the solar irradiance at the target country, Guatemala, is evaluated with a weather forecasting model, and PV energy potential is estimated. From the computed potential distribution, the appropriate area for installation of a large-scale PV system is selected. This area is where the solar irradiance is large and the energy consumption regions are close by. The optimal tilted angle of the PV panels is proposed as well from the PV output simulation. The time series data of the PV output is also evaluated in this part, and it will be applied to the analysis of the impact of the PV installation to the electric power grid management in the following part of this series of works.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1860 ◽  
Author(s):  
J. Teo ◽  
Rodney Tan ◽  
V. Mok ◽  
Vigna Ramachandaramurthy ◽  
ChiaKwang Tan

A photovoltaic system is highly susceptible to partial shading. Based on the functionality of a photovoltaic system that relies on solar irradiance to generate electrical power, it is tacitly assumed that the maximum power of a partially shaded photovoltaic system always decreases as the shading heaviness increases. However, the literature has reported that this might not be the case. The maximum power of a partially shaded photovoltaic system under a fixed configuration and partial shading pattern can be highly insusceptible to shading heaviness when a certain critical point is met. This paper presents an investigation of the impact of partial shading and the critical point that reduce the susceptibility of shading heaviness. Photovoltaic string formed by series-connected photovoltaic modules is used in this research. The investigation of the P-V characteristic curve under different numbers of shaded modules and shading heaviness suggests that the photovoltaic string becomes insusceptible to shading heaviness when the shaded modules irradiance reaches a certain critical point. The critical point can vary based on the number of the shaded modules. The formulated equation in this research contributes to determining the critical point for different photovoltaic string sizes and numbers of shaded modules in the photovoltaic string.


2021 ◽  
Vol 39 (1) ◽  
pp. 292-298
Author(s):  
Sainadh Singh Kshatri ◽  
Javed Dhillon ◽  
Sachin Mishra

Today inverter system is one of the enabling technologies for efficiently harnessing energy from renewable energy sources (Solar, Wind, etc.,) and also for high reliable grid interfacing systems. With the advancements in power electronics, inverter conversion efficiency pushed to 98%, also PV is becoming a major renewable energy source globally. Nevertheless, the reliability performance of PV inverter is of high concern. Different environmental factors like solar irradiance, ambient temperature (also called Mission Profile) affect the reliability performance of PV inverter. Environmental conditions vary from location to location. Hence to quantify the reliability performance of PV inverter all these factors need to be considered. In this paper reliability performance of PV inverter is evaluated considering environmental factors and geographical locations. For the reliability evaluation, a 1-ϕ, 3-kW grid connected PV system is developed in PLECS. Full bridge PV inverter with 600V/30A IGBT is employed as the interface between grid and PV source. Real time mission profile data of one-year logs at India (Relatively hot climate) and Denmark (Relatively cold climate) to account for environmental factors and geographical locations during the reliability performance evaluation of PV inverter. Monte Carlo simulation is used to generate a population of 20000 samples with 5% variation. Lifetime for 20000 samples is calculated and fitted in Two Parameter Weibull distribution. B10 lifetime is calculated at two locations. The results of this paper reveal that environmental factors and geographical locations have a significant impact on PV inverter reliability performance.


2021 ◽  
Vol 11 (3) ◽  
pp. 1135
Author(s):  
Zhongjie Guo ◽  
Wei Wei ◽  
Maochun Wang ◽  
Jian Li ◽  
Shaowei Huang ◽  
...  

The uncertain natures of renewable energy lead to its underutilization; energy storage unit (ESU) is expected to be one of the most promising solutions to this issue. This paper evaluates the impact of ESUs on renewable energy curtailment. For any fixed renewable power output, the evaluation model minimizes the total amount of curtailment and is formulated as a mixed integer linear program (MILP) with the complementarity constraints on the charging and discharging behaviors of ESUs; by treating the power and energy capacities of ESUs as parameters, the MILP is transformed into a multi-parametric MILP (mp-MILP), whose optimal value function (OVF) explicitly maps the parameters to the renewable energy curtailment. Further, given the inexactness of uncertainty’s probability distribution, a distributionally robust mp-MILP (DR-mp-MILP) is proposed that considers the worst distribution in a neighborhood of the empirical distribution built by the representative scenarios. The DR-mp-MILP has a max–min form and is reformed as a canonical mp-MILP by duality theory. The proposed method was validated on the modified IEEE nine-bus systems; the parameterized OVFs provide insightful suggestions on storage sizing.


Sign in / Sign up

Export Citation Format

Share Document