scholarly journals Physical Constraints on Global Social-Ecological Energy System

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8177
Author(s):  
Marco Casazza ◽  
Francesco Gonella ◽  
Gengyuan Liu ◽  
Antonio Proto ◽  
Renato Passaro

Energy is the main driver of human Social-Ecological System (SES) dynamics. Collective energy properties of human SES can be described applying the principles of statistical mechanics: (i) energy consumption repartition; (ii) efficiency; (iii) performance, as efficient power, in relation to the least-action principle. International Energy Agency data are analyzed through the lens of such principles. Declining physical efficiency and growth of power losses emerge from our analysis. Losses mainly depend on intermediate system outputs and non-energy final output. Energy performance at Country level also depends on efficient power consumption. Better and worse performing Countries are identified accordingly. Five policy-relevant areas are identified in relation to the physical principles introduced in this paper: Improve efficiency; Decouple economic growth from environmental degradation; Focus on high value added and labor-intensive sectors; Rationalize inefficient fossil fuel subsidies that encourage wasteful consumption; Upgrade the technological capabilities. Coherently with our findings, policies should support the following actions: (1) redefine sectoral energy distribution shares; (2) Improve Country-level performance, if needed; (3) Reduce intermediate outputs and non-energy final output; (4) Reduce resources supply to improve eco-efficiency together with system performance.

Urban Science ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 82
Author(s):  
Maria Rosaria Guarini ◽  
Francesco Sica ◽  
Pierluigi Morano ◽  
Josè Antonio Vadalà

The International Energy Agency (2019) states 40% of CO2 emissions in cities are linked to the buildings stock, in particular to heating and cooling systems, material types and users’ performance. According to Green New Deal, the energy transition of buildings is becoming a priority. This is via investments with low environmental impacts through renewable energy sources. The paper describes an integrated economic-energy-environmental framework (IE3F), i.e., an economic evaluation protocol for new constructions and/or existing renewal projects aimed at supporting the choice phase between alternative technological solutions based on biocompatible materials. The IE3F borrows the logical-operative flow of the life cycle assessment multi-criteria approach. The value aspects translated into monetary terms that characterize the project life cycle are taken into account. The protocol was tested on an emergency project in Italy, namely in Messina City. The results obtained provide evidence of the versatile use of IE3F and its practical utility to guide economic convenience judgements on building investments and choice problems between alternatives in sustainable perspective. The research deepening will be about keeping track of multiple performance levels of the construction, not only the energy performance, and attempting to estimate the corresponding economic value in terms of increase/decrease of construction cost value.


Author(s):  
Kathleen Araújo

This chapter outlines the design of the current study. It discusses my underlying logic for scoping energy system change with theory-building in the form of (1) a framework on intervention that operationalizes insights from the previous chapter and (2) conceptual models of structural readiness. A brief review then follows of related, global developments to provide broader context for the cases. The chapter concludes with a preview of the transitions that will be discussed in depth in subsequent chapters. This book draws on my research of four national energy system transitions covering the period since 1970. I selected a timeframe that reflected a common context of international events which preceded as well as followed the oil shocks of 1973 and 1979. Such framing allowed me to trace policy and technology learning over multiple decades for different cases. I completed field work for this project primarily between 2010 and 2012, with updates continuing through to the time this book went to press. I selected cases from more than 100 countries in the International Energy Agency (IEA) databases. The ones that I chose represented countries which demonstrated an increase of 100% or more in domestic production of a specific, low carbon energy and the displacement of at least 15 percentage points in the energy mix by this same, low carbon energy relative to traditional fuels for the country and sector of relevance. I utilized adoption and displacement metrics to consider both absolute and relative changes. Final cases reflect a diversity of energy types and, to some extent, differences in the socio-economic and geographic attributes of the countries. The technologies represent some of the more economically-competitive substitutes for fossil fuels. It’s important to emphasize that the number of cases was neither exhaustive nor fully representative. Instead, the cases reflect an illustrative group of newer, low carbon energy technologies for in depth evaluation. Each of the cases shares certain, basic similarities. These include a national energy system comprised of actors, inputs, and outputs with systemic architecture connecting the constituent parts in a complex network of energy-centered flows over time—including extraction, production, sale, delivery, regulation, and consumption.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3001 ◽  
Author(s):  
Linus Lawrenz ◽  
Bobby Xiong ◽  
Luise Lorenz ◽  
Alexandra Krumm ◽  
Hans Hosenfeld ◽  
...  

With an increasing expected energy demand and current dominance of coal electrification, India plays a major role in global carbon policies and the future low-carbon transformation. This paper explores three energy pathways for India until 2050 by applying the linear, cost-minimizing, global energy system model (GENeSYS-MOD). The benchmark scenario “limited emissions only” (LEO) is based on ambitious targets set out by the Paris Agreement. A more conservative “business as usual” (BAU) scenario is sketched out along the lines of the New Policies scenario from the International Energy Agency (IEA). On the more ambitious side, we explore the potential implications of supplying the Indian economy entirely with renewable energies with the “100% renewable energy sources” (100% RES) scenario. Overall, our results suggest that a transformation process towards a low-carbon energy system in the power, heat, and transportation sectors until 2050 is technically feasible. Solar power is likely to establish itself as the key energy source by 2050 in all scenarios, given the model’s underlying emission limits and technical parameters. The paper concludes with an analysis of potential social, economic and political barriers to be overcome for the needed Indian low-carbon transformation.


Author(s):  
Hanane Es-sebyty ◽  
Bouchra Abbi ◽  
Elena Ferretti ◽  
Mohammed Igouzal

The construction field uses up over one-third of the global energy consumption and contribute to 40% of CO2 emissions according to the International Energy Agency (IEA) and the 2020 annual reporter of United Nation, Goal 11 (Make cities inclusive, safe, resilient and sustainable) which discusses sustainable, safe and efficient buildings. Therefore, Morocco has a commitment to this program by publishing the law 47-09 of energy efficiency. This work aims to study the energy efficiency of two types of building, a conventional and a natural building. Conventional building is constructed using concrete, while the natural one uses sand clay and straws. As for the technique of making the natural building, it perpetually follows the same approach accustomed in rural zones of Atlas Mountains in Morocco. In this research we also simulate, temperature and humidity variation inside these buildings using TRNSYS software. Sketch Up software was employed to design these houses. The weather database is used for a typical meteorological year (TMY). In the case of natural building, many building configurations were simulated: roof insulation, floor insulation, different types of glazing and sun protection. What's more, the thermal comfort is revealed to be more conspicuous in the case of natural building.


Author(s):  
V. I. Salygin ◽  
I. I. Litvinyuk

What are the future global systems developments? It remains one the biggest unknown, especially in terms of energy, as it is globally considered as both cause and solution for multiple problems of the humanity. Therefore, nowadays a number of experts are exploring driving forces, critical uncertainties and unknowns that have an influence on future energy systems development. This article aims at providing a brief investigation of existing world energy scenarios that cover the range of plausible outcomes of future global energy system development. Those are represented by International Energy Agency, World Energy Council, Organization of the Petroleum Exporting Countries, and others. The analysis covers both qualitative and quantitative indicators of the world energy system development that provide for future worldview formation. The article looks into various approaches to energy system development forecasting and scenario building employed by the abovementioned organisations, and discovers the motives for making assumptions as the means of attaining internal targets and the consequences of the distinction of individual attitude to the development trends within the expert community. The current assessment implies grouping of the most advanced of the existing energy system development models, identification their advantages and disadvantages, and shows differences in modeling approaches used in a number of specialized international organisations.


Buildings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 103 ◽  
Author(s):  
Manuela Almeida ◽  
Marco Ferreira ◽  
Ricardo Barbosa

The construction sector is facing increasingly strict energy efficiency regulations. Existing buildings have specific technical, functional and economic constraints, which, in fulfilling regulations, could lead to costly and complex renovation procedures and also lead to missed opportunities for improving their energy performance. In this article, the methodology for comparing cost-optimality in building renovations, developed in the International Energy Agency (IEA)–Energy in Buildings and Communities (EBC) Annex 56 project, is extended with a life cycle assessment by including embodied primary energy and carbon emissions in the calculations. The objective is to understand the relevance of embodied energy and carbon emissions in the evaluation of the cost effectiveness of building renovation solutions towards nearly zero energy buildings, as well as the effect of the embodied values in the achievable carbon emissions and primary energy reductions expected in an energy renovation. Results from six case studies, representative of different regions in Europe, suggest that embodied values of energy and carbon emissions have a decreasing effect—ranging from 2 to 32%—on the potential reductions of energy and emissions that can be achieved with renovation measures in buildings. In addition, the consideration of the embodied energy and carbon emissions does not affect the ranking of the renovation packages.


1999 ◽  
Author(s):  
Curtis A. Palmer ◽  
Allan Kolker ◽  
Jason C. Willett ◽  
Stanley J. Mroczkowski ◽  
Robert B. Finkelman ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Ikuo Kuroiwa

AbstractExtending the technique of unit structure analysis, which was originally developed by Ozaki (J Econ 73(5):720–748, 1980), this study introduces a method of value chain mapping that uses international input–output data and reveals both the upstream and downstream transactions of goods and services, as well as primary input (value added) and final output (final demand) transactions, which emerge along the entire value chain. This method is then applied to the agricultural value chain of three Greater Mekong Subregion countries: Thailand, Vietnam, and Cambodia. The results show that the agricultural value chain has been increasingly internationalized, although there is still room to benefit from participating in global value chains, especially in a country such as Cambodia. Although there are some constraints regarding the methodology and data, the method proves useful in tracing the entire value chain.


2021 ◽  
pp. 1-21
Author(s):  
Christian Downie

Abstract In policy domains characterised by complexity, international organizations (IOs) with overlapping mandates and governance functions regularly interact in ways that have important implications for global governance. Yet the dynamics of IO interactions remain understudied. This article breaks new ground by building on the theoretical insights of organizational ecology to examine IO competition, cooperation, and adaptation in the domain of energy. Drawing on original empirical data, I consider three related hypotheses: (1) competition between IOs in the same population is likely to centre on material resources; (2) IOs are more likely to cooperate when they have a shared governance goal; and (3) individual IOs can adapt by changing their goals and boundaries. In considering these hypotheses, this article highlights the limits of the organizational ecology approach and the need to broaden it to account for the possibility that IOs do cooperate, and that individual IOs, such as the International Energy Agency, have the capacity to adapt to changes in their environment.


Sign in / Sign up

Export Citation Format

Share Document