scholarly journals Biological Consequences of Marine Energy Development on Marine Animals

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8460
Author(s):  
Lenaïg G. Hemery ◽  
Andrea E. Copping ◽  
Dorian M. Overhus

Marine energy devices harness power from attributes of ocean water to form a sustainable energy source. Knowledge gaps remain about whether marine energy systems can affect the environment, adding another threat to animal populations and habitats already under pressure from climate change and anthropogenic activities. To date, potential environmental effects have been studied under the scope of stressor–receptor interactions, where moving parts of, or emissions from, a system could harm the animals, habitats, and natural processes. While crucial for understanding effects and identifying knowledge gaps, this approach misses a holistic view of what animals may experience in the presence of marine energy systems. We look at six biological consequences and forces that drive the health of an animal population and the effects expected from marine energy development: success of early life stages; changes in competitive capabilities; growth and survival based on food availability; susceptibility to predators; injury or death; and reproductive success. We use case studies to develop this approach, focusing on a variety of marine animals. An approximate level of risk is assigned for each interaction based on the biological consequences. This work highlights the need to examine the effects of marine energy development on animal populations within their natural habitats.

2022 ◽  
Vol 10 (1) ◽  
pp. 92
Author(s):  
Lenaïg G. Hemery ◽  
Kailan F. Mackereth ◽  
Levy G. Tugade

Marine energy devices are installed in highly dynamic environments and have the potential to affect the benthic and pelagic habitats around them. Regulatory bodies often require baseline characterization and/or post-installation monitoring to determine whether changes in these habitats are being observed. However, a great diversity of technologies is available for surveying and sampling marine habitats, and selecting the most suitable instrument to identify and measure changes in habitats at marine energy sites can become a daunting task. We conducted a thorough review of journal articles, survey reports, and grey literature to extract information about the technologies used, the data collection and processing methods, and the performance and effectiveness of these instruments. We examined documents related to marine energy development, offshore wind farms, oil and gas offshore sites, and other marine industries around the world over the last 20 years. A total of 120 different technologies were identified across six main habitat categories: seafloor, sediment, infauna, epifauna, pelagic, and biofouling. The technologies were organized into 12 broad technology classes: acoustic, corer, dredge, grab, hook and line, net and trawl, plate, remote sensing, scrape samples, trap, visual, and others. Visual was the most common and the most diverse technology class, with applications across all six habitat categories. Technologies and sampling methods that are designed for working efficiently in energetic environments have greater success at marine energy sites. In addition, sampling designs and statistical analyses should be carefully thought through to identify differences in faunal assemblages and spatiotemporal changes in habitats.


2020 ◽  
Author(s):  
Andrew T. Ozga ◽  
Timothy H. Webster ◽  
Ian C. Gilby ◽  
Melissa A. Wilson ◽  
Rebecca S. Nockerts ◽  
...  

AbstractThe ability to generate genomic data from wild animal populations has the potential to give unprecedented insight into the population history and dynamics of species in their natural habitats. However, in the case of many species, it is impossible legally, ethically, or logistically to obtain tissues samples of high-quality necessary for genomic analyses. In this study we evaluate the success of multiple sources of genetic material (feces, urine, dentin, and dental calculus) and several capture methods (shotgun, whole-genome, exome) in generating genome-scale data in wild eastern chimpanzees (Pan troglodytes schweinfurthii) from Gombe National Park, Tanzania. We found that urine harbors significantly more host DNA than other sources, leading to broader and deeper coverage across the genome. Urine also exhibited a lower rate of allelic dropout. We found exome sequencing to be far more successful than both shotgun sequencing and whole-genome capture at generating usable data from low-quality samples such as feces and dental calculus. These results highlight urine as a promising and untapped source of DNA that can be noninvasively collected from wild populations of many species.


2004 ◽  
Vol 359 (1447) ◽  
pp. 1107-1114 ◽  
Author(s):  
Diana Bell ◽  
Scott Roberton ◽  
Paul R. Hunter

The search for animal host origins of severe acute respiratory syndrome (SARS) coronavirus has so far remained focused on wildlife markets, restaurants and farms within China. A significant proportion of this wildlife enters China through an expanding regional network of illegal, international wildlife trade. We present the case for extending the search for ancestral coronaviruses and their hosts across international borders into countries such as Vietnam and Lao People's Democratic Republic, where the same guilds of species are found on sale in similar wildlife markets or food outlets. The three species that have so far been implicated, a viverrid, a mustelid and a canid, are part of a large suite of small carnivores distributed across this region currently overexploited by this international wildlife trade. A major lesson from SARS is that the underlying roots of newly emergent zoonotic diseases may lie in the parallel biodiversity crisis of massive species loss as a result of overexploitation of wild animal populations and the destruction of their natural habitats by increasing human populations. To address these dual threats to the long–term future of biodiversity, including man, requires a less anthropocentric and more interdisciplinary approach to problems that require the combined research expertise of ecologists, conservation biologists, veterinarians, epidemiologists, virologists, as well as human health professionals.


Author(s):  
M. Khoroshev ◽  
F. Depisch ◽  
S. Subbotin

The IAEA International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) can be considered as the IAEA’s response to the challenges of growing energy demand. INPRO’s activities are intended to help to achieve one of the main objectives of the IAEA — to promote the development and peaceful use of nuclear energy. INPRO applies a carefully developed Methodology to assess Innovative Nuclear Energy Systems (INS) and to define R&D needs and deployment strategies for the development of large-scale regional and global INS. The purpose is to match the opportunities and challenges of sustainable energy supply provided by nuclear energy (NE) to the global balance of demands and resources.


Author(s):  
Raymond Alcorn ◽  
Anthony Lewis ◽  
Mark Healy

The paper discusses the lessons learned from the European Funded Framework 7 Research project Components for Ocean Renewable Energy Systems (CORES) which developed and trialed new components and systems for ocean energy devices. The authors are the coordinator and project manager so the paper will give this overview of the project. This will include detail of the work packages, major achievements, significant impacts, summary results and outcomes of the sea trials.


Author(s):  
Julio C. Correa ◽  
Diego A. Flo´rez ◽  
Norha L. Posada ◽  
Rau´l A. Valencia ◽  
Carlos A. Zuluaga

There are several alternatives to obtain marine energy: waves, tides, currents, gradients of temperature and gradients of salinity. All of them have been studied extensively, however their implementation is closely related to the particular conditions of the local sea. This paper presents preliminary results related with the kind of the instrumentation required to monitor the behavior of the variables associated with marine energy and the best available technologies to take advantage of the marine power in the Colombian seas.


2018 ◽  
Vol 19 (3) ◽  
pp. 622-641 ◽  
Author(s):  
Cheddi Kiravu ◽  
François Diaz-Maurin ◽  
Mario Giampietro ◽  
Alan C. Brent ◽  
Sandra G.F. Bukkens ◽  
...  

Purpose This paper aims to present a new master’s programme for promoting energy access and energy efficiency in Southern Africa. Design/methodology/approach A transdisciplinary approach called “participatory integrated assessment of energy systems” (PARTICIPIA) was used for the development of the curriculum. This approach is based on the two emerging fields of “multi-scale integrated assessment” and “science for governance”, which bring innovative concepts and methods. Findings The application of the PARTICIPIA methodology to three case studies reveals that the proposed transdisciplinary approach could support energy and development policies in the region. The implementation of the PARTICIPIA curriculum in three higher education institutions reveals its ability to respond to the needs of specific contexts and its connection with existing higher education programmes. Practical implications Considering energy issues from a transdisciplinary approach in higher education is absolutely critical because such a holistic view cannot be achieved through engineering curricula. Deliberate and greater efforts should be made to integrate methods from “multi-scale integrated assessment” and “science for governance” in higher education curricula to train a new breed of modern-day energy planners in charge of coming up with solutions that are shared by all relevant stakeholders. Originality/value This paper presents an innovative higher education curriculum in terms of the attention given to energy access and energy efficiency that affect the southern Africa region and the nature of the methodology adopted to face these issues.


2021 ◽  
Vol 4 (27) ◽  
pp. 144-148
Author(s):  
M.A. Liubarskaia ◽  
◽  
V.S. Chekalin ◽  
O.L. Kim ◽  
◽  
...  

Modern energy systems are at the stage of global transformations affecting the function-ing of industries and spheres of activity. The changes that are taking place are not always positive. For example, the unreliability of re-newable energy in difficult weather condi-tions has led to problems with energy supply to European consumers in 2020–2021. The article shows the feasibility of using the ter-minological and mathematical apparatus of economic synergy for the analysis and fore-casting of indicators of energy systems. In particular, it is proposed to take into account the partial reversibility of evolutionary pro-cesses in the strategic planning of energy development.


Sign in / Sign up

Export Citation Format

Share Document