scholarly journals Machine-Learning-Based Condition Assessment of Gas Turbines—A Review

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8468
Author(s):  
Martí de Castro-Cros ◽  
Manel Velasco ◽  
Cecilio Angulo

Condition monitoring, diagnostics, and prognostics are key factors in today’s competitive industrial sector. Equipment digitalisation has increased the amount of available data throughout the industrial process, and the development of new and more advanced techniques has significantly improved the performance of industrial machines. This publication focuses on surveying the last decade of evolution of condition monitoring, diagnostic, and prognostic techniques using machine-learning (ML)-based models for the improvement of the operational performance of gas turbines. A comprehensive review of the literature led to a performance assessment of ML models and their applications to gas turbines, as well as a discussion of the major challenges and opportunities for the research on these kind of engines. This paper further concludes that the combination of the available information captured through the collectors and the ML techniques shows promising results in increasing the accuracy, robustness, precision, and generalisation of industrial gas turbine equipment.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sergio Martin del Campo Barraza ◽  
William Lindskog ◽  
Davide Badalotti ◽  
Oskar Liew ◽  
Arash Toyser

Data-based models built using machine learning solutions are becoming more prominent in the condition monitoring, maintenance, and prognostics fields. The capacity to build these models using a machine learning approach depends largely in the quality of the data. Of particular importance is the availability of labelled data, which describes the conditions that are intended to be identified. However, properly labelled data that is useful in many machine learning strategies is a scare resource. Furthermore, producing high-quality labelled data is expensive, time-consuming and a lot of times inaccurate given the uncertainty surrounding the labeling process and the annotators.  Active Learning (AL) has emerged as a semi-supervised approach that enables cost and time reductions of the labeling process. This approach has had a delayed adoption for time series classification given the difficulty to extract and present the time series information in such a way that it is easy to understand for the human annotator who incorporates the labels. This difficulty arises from the large dimensionality that many of these time series possess. This challenge is exacerbated by the cold-start problem, where the initial labelled dataset used in typical AL frameworks may not exist. Thus, the initial set of labels to be allocated to the time series samples is not available. This last challenge is particularly common on many condition monitoring applications where data samples of specific faults or problems does not exist. In this article, we present an AL framework to be used in the classification of time series from industrial process data, in particular vibration waveforms originated from condition monitoring applications. In this framework, we deal with the absence of labels to train an initial classification model by introducing a pre-clustering step. This step uses an unsupervised clustering algorithm to identify the number of labels and selects the points with a stronger group belonging as initial samples to be labelled in the active learning step. Furthermore, this framework presents two approaches to present the information to the annotator that can be via time-series imaging and automatic extraction of statistical features. Our work is motivated by the interest to facilitate the effort required for labeling time-series waveforms, while maintaining a high level of accuracy and consistency on those labels. In addition, we study the number of time-series samples that require to be labelled to achieve different levels of classification accuracy, as well as their confidence intervals. These experiments are carried out using vibration signals from a well-known rolling element bearing dataset and typical process data from a production plant.   An active learning framework that considers the conditions of the data commonly found in maintenance and condition monitoring applications while presenting the data in ways easy to interpret by human annotators can facilitate the generation reliable datasets. These datasets can, in turn, assist in the development of data-driven models that describe the many different processes that a machine undergoes.


Author(s):  
Alexandre Mauricio ◽  
Dustin Helm ◽  
Markus Timusk ◽  
Jerome Antoni ◽  
Konstantinos Gryllias

Abstract Condition monitoring arises as a valuable industrial process in order to assess the health of rotating machinery, providing early and accurate warning of potential failures and allowing for the planning and effective realization of preventative maintenance actions. Nowadays machinery (gas turbines, wind turbines etc.) manufacturers adopt new business models, providing not only the equipment itself but additionally taking on responsibilities of condition monitoring, by embedding sensors and health monitoring systems within each unit and prompting maintenance actions when necessary. Among others, rolling element bearings are one of the most critical components in rotating machinery. In complex machines the failure indications of an early bearing damage are weak compared to other sources of excitations (e.g. gears, shafts, rotors etc.). Vibration analysis is most widely used and various methods have been proposed, including analysis in the time and frequency domain. In a number of applications, changes in the operating conditions (speed/load) influence the vibration sources and change the frequency and amplitude characteristics of the vibroacoustic signature, making them nonstationary. Under changing environments, where speed and load vary, the assumption of quasi-stationary is not appropriate and as a result a number of time-frequency and time-order representations have been introduced, such as the Short Time Fourier Transform and the Wavelets. Recently an emerging interest has been focused on modelling rotating machinery signals as cyclostationary, which is a particular class of non-stationary stochastic processes. The classical cyclostationary tools, such as the Cyclic Spectral Correlation Density (CSCD) and the Cyclic Modulation Spectrum (CMS), can be used in order to extract interesting information about the cyclic behavior of cyclostationary signals, only under the assumption that the speed of machinery is constant or nearly constant. Global diagnostic indicators have been proposed as a measure of cyclostationarity under steady operating conditions. In order to overcome this limitation a generalization of both SCD and CMS functions have been proposed displaying cyclic Order versus Frequency as well as diagnostic indicators of cyclo-non-stationarity in order to cover the speed varying operating conditions. The scope of this paper is to propose a novel approach for the analysis of cyclo-non-stationary signals based on the generalization of indicators of cyclo-non-stationarity in order to cover the simultaneous and independently varying speed and load operating conditions. The effectiveness of the approach is evaluated on simulated and real signals captured on a dedicated test rig.


Author(s):  
Sumi Helal ◽  
Flavia C. Delicato ◽  
Cintia B. Margi ◽  
Satyajayant Misra ◽  
Markus Endler

2021 ◽  
Vol 13 (7) ◽  
pp. 4006
Author(s):  
Lisa Branchini ◽  
Maria Chiara Bignozzi ◽  
Benedetta Ferrari ◽  
Barbara Mazzanti ◽  
Saverio Ottaviano ◽  
...  

Ceramic tile production is an industrial process where energy efficiency management is crucial, given the high amount of energy (electrical and thermal) required by the production cycle. This study presents the preliminary results of a research project aimed at defining the benefits of using combined heat and power (CHP) systems in the ceramic sector. Data collected from ten CHP installations allowed us to outline the average characteristics of prime movers, and to quantify the contribution of CHP thermal energy supporting the dryer process. The electric size of the installed CHP units resulted in being between 3.4 MW and 4.9 MW, with an average value of 4 MW. Data revealed that when the goal is to maximize the generation of electricity for self-consumption, internal combustion engines are the preferred choice due to higher conversion efficiency. In contrast, gas turbines allowed us to minimize the consumption of natural gas input to the spray dryer. Indeed, the fraction of the dryer thermal demand (between 600–950 kcal/kgH2O), covered by CHP discharged heat, is strictly dependent on the type of prime mover installed: lower values, in the range of 30–45%, are characteristic of combustion engines, whereas the use of gas turbines can contribute up to 77% of the process’s total consumption.


Author(s):  
Cesar Celis ◽  
Érica Xavier ◽  
Tairo Teixeira ◽  
Gustavo R. S. Pinto

This work describes the development and implementation of a signal analysis module which allows the reliable detection of operating regimes in industrial gas turbines. Its use is intended for steady state-based condition monitoring and diagnostics systems. This type of systems requires the determination of the operating regime of the equipment, in this particular case, of the industrial gas turbine. After a brief introduction the context in which the signal analysis module is developed is highlighted. Next the state of the art of the different methodologies used for steady state detection in equipment is summarized. A detailed description of the signal analysis module developed, including its different sub systems and the main hypotheses considered during its development, is shown to follow. Finally the main results obtained through the use of the module developed are presented and discussed. The results obtained emphasize the adequacy of this type of procedures for the determination of operating regimes in industrial gas turbines.


Author(s):  
Budimir Rosic ◽  
John D. Denton ◽  
John H. Horlock ◽  
Sumiu Uchida

This paper numerically investigates the interaction between multiple can combustors and the first vane in an industrial gas turbine with 16 can combustors and 32 vanes in order to find ways of reducing the overall cooling requirements. Two promising concepts for the overall cooling reduction are presented. In the first, by minimising the axial distance between the combustor wall and the vane, the stagnation region at the LE of every second vane can be effectively shielded from the hot mainstream gases. The LE shielding allows continuous cooling slots to be used (as an alternative to discrete cooling holes) to cool downstream parts of the vane using a portion of the saved LE showerhead cooling air. The second concept proposes a full combustor and first vane integration. In this novel concept the number of vanes is halved and the combustor walls are used to assist the flow turning. All remaining vanes are fully integrated into the combustor walls. In this way the total wetted area of the integrated system is reduced, and by shielding the LEs of the remaining vanes the total amount of cooling air can be reduced. The proposed combustor and first vane integration does not detrimentally affect the aerodynamics of the combustor and vane system. The concept also simplifies the design and should lower the manufacturing costs.


Sign in / Sign up

Export Citation Format

Share Document