scholarly journals The Roles of the Histone Protein Modifier EZH2 in the Uterus and Placenta

Epigenomes ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 20
Author(s):  
Ana M. Mesa ◽  
Cheryl S. Rosenfeld ◽  
Geetu Tuteja ◽  
Theresa I. Medrano ◽  
Paul S. Cooke

Epigenetic modifications regulate normal physiological, as well as pathological processes in various organs, including the uterus and placenta. Both organs undergo dramatic and rapid restructuring that depends upon precise orchestration of events. Epigenetic changes that alter transcription and translation of gene-sets regulate such responses. Histone modifications alter the chromatin structure, thereby affecting transcription factor access to gene promoter regions. Binding of histones to DNA is regulated by addition or removal of subunit methyl and other groups, which can inhibit or stimulate transcription. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb repressive complex 2 (PRC2) that catalyzes tri-methylation of histone H3 at Lys 27 (H3K27me3) and subsequently suppresses transcription of genes bound by such histones. Uterine EZH2 expression exerts a critical role in development and function of this organ with deletion of this gene resulting in uterine hyperplasia and expression of cancer-associated transcripts. Elucidating the roles of EZH2 in uterus and placenta is essential as EZH2 dysregulation is associated with several uterine and placental pathologies. Herein, we discuss EZH2 functions in uterus and placenta, emphasizing its physiological and pathological importance.

2021 ◽  
Vol 8 (12) ◽  
pp. 170
Author(s):  
Alexandra V. Rozhkova ◽  
Veronika G. Dmitrieva ◽  
Elena V. Nosova ◽  
Alexander D. Dergunov ◽  
Svetlana A. Limborska ◽  
...  

Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.


2001 ◽  
Vol 360 (1) ◽  
pp. 49-56 ◽  
Author(s):  
Junichiro NISHIYAMA ◽  
Xiaolan YI ◽  
Manjeri A. VENKATACHALAM ◽  
Zheng DONG

Caspase-9 is the apex caspase of the mitochondrial pathway of apoptosis, which plays a critical role in apoptotic initiation and progression. However, gene regulation of caspase-9 is largely unknown. This is in part due to the lack of information on the gene promoter. Here we have cloned the full-length cDNA of rat caspase-9 and have isolated promoter regions of this gene. The rat caspase-9 cDNA of 2058bp predicts a protein of 454 amino acids, which contains a caspase-recruitment domain (‘CARD’) at the N-terminus and enzymic domains at the C-terminus. The enzyme's active site, with a characteristic motif of QACGG, was also identified. Overall, rat and human caspase-9 have 71% identity. With the cDNA sequence, we subsequently isolated the proximal 5′-flanking regions of rat caspase-9 by the procedure of genomic walking. The 2270bp genomic segment is ‘TATA-less’, but contains several GC boxes. Elements binding known transcription factors such as Sp-1, Pit-1, CCAAT-enhancer-binding protein (C/EBP), glucocorticoid receptor and hypoxia-inducible factor 1 (HIF-1) were also identified. When cloned into reporter gene vectors, the genomic segment showed significant promoter activity, indicating that the 5′-flanking regions isolated by genomic walking contain the gene promoter of rat caspase-9. Of significance is that the cloned promoter segments were activated by severe hypoxia, conditions inducing caspase-9 transcription. Thus, the genomic sequences reported here contain not only the basal promoter of rat caspase-9 but also regulatory elements responsive to pathophysiological stimuli including hypoxia.


2020 ◽  
Vol 21 (22) ◽  
pp. 8472
Author(s):  
Laura Guajardo ◽  
Rodrigo Aguilar ◽  
Fernando J. Bustos ◽  
Gino Nardocci ◽  
Rodrigo A. Gutiérrez ◽  
...  

Ezh2 is a catalytic subunit of the polycomb repressive complex 2 (PRC2) which mediates epigenetic gene silencing through depositing the mark histone H3 lysine 27 trimethylation (H3K27me3) at target genomic sequences. Previous studies have demonstrated that Enhancer of Zeste Homolog 2 (Ezh2) was differentially expressed during maturation of hippocampal neurons; in immature neurons, Ezh2 was abundantly expressed, whereas in mature neurons the expression Ezh2 was significantly reduced. Here, we report that Ezh2 is downregulated by microRNAs (miRs) that are expressed during the hippocampal maturation process. We show that, in mature hippocampal neurons, lethal-7 (let-7) and microRNA-124 (miR-124) are robustly expressed and can target cognate motifs at the 3′-UTR of the Ezh2 gene sequence to downregulate Ezh2 expression. Together, these data demonstrate that the PRC2 repressive activity during hippocampal maturation is controlled through a post-transcriptional mechanism that mediates Ezh2 downregulation in mature neurons.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 823
Author(s):  
Alexia Klonou ◽  
Sarantis Chlamydas ◽  
Christina Piperi

The Mixed Lineage Leukemia 2 (MLL2) protein, also known as KMT2B, belongs to the family of mammalian histone H3 lysine 4 (H3K4) methyltransferases. It is a large protein of 2715 amino acids, widely expressed in adult human tissues and a paralog of the MLL1 protein. MLL2 contains a characteristic C-terminal SET domain responsible for methyltransferase activity and forms a protein complex with WRAD (WDR5, RbBP5, ASH2L and DPY30), host cell factors 1/2 (HCF 1/2) and Menin. The MLL2 complex is responsible for H3K4 trimethylation (H3K4me3) on specific gene promoters and nearby cis-regulatory sites, regulating bivalent developmental genes as well as stem cell and germinal cell differentiation gene sets. Moreover, MLL2 plays a critical role in development and germ line deletions of Mll2 have been associated with early growth retardation, neural tube defects and apoptosis that leads to embryonic death. It has also been involved in the control of voluntary movement and the pathogenesis of early stage childhood dystonia. Additionally, tumor-promoting functions of MLL2 have been detected in several cancer types, including colorectal, hepatocellular, follicular cancer and gliomas. In this review, we discuss the main structural and functional aspects of the MLL2 methyltransferase with particular emphasis on transcriptional mechanisms, gene regulation and association with diseases.


2019 ◽  
Vol 101 (2) ◽  
pp. 306-317 ◽  
Author(s):  
Manjunatha K Nanjappa ◽  
Ana M Mesa ◽  
Theresa I Medrano ◽  
Wendy N Jefferson ◽  
Francesco J DeMayo ◽  
...  

Abstract Enhancer of zeste homolog 2 (EZH2) is a rate-limiting catalytic subunit of a histone methyltransferase, polycomb repressive complex, which silences gene activity through the repressive histone mark H3K27me3. EZH2 is critical for epigenetic effects of early estrogen treatment, and may be involved in uterine development and pathologies. We investigated EZH2 expression, regulation, and its role in uterine development/function. Uterine epithelial EZH2 expression was associated with proliferation and was high neonatally then declined by weaning. Pre-weaning uterine EZH2 expression was comparable in wild-type and estrogen receptor 1 knockout mice, showing neonatal EZH2 expression is ESR1 independent. Epithelial EZH2 was upregulated by 17β-estradiol (E2) and inhibited by progesterone in adult uteri from ovariectomized mice. To investigate the uterine role of EZH2, we developed a EZH2 conditional knockout (Ezh2cKO) mouse using a cre recombinase driven by the progesterone receptor (Pgr) promoter that produced Ezh2cKO mice lacking EZH2 in Pgr-expressing tissues (e.g. uterus, mammary glands). In Ezh2cKO uteri, EZH2 was deleted neonatally. These uteri had reduced H3K27me3, were larger than WT, and showed adult cystic endometrial hyperplasia. Ovary-independent uterine epithelial proliferation and increased numbers of highly proliferative uterine glands were seen in adult Ezh2cKO mice. Female Ezh2cKO mice were initially subfertile, and then became infertile by 9 months. Mammary gland development in Ezh2cKO mice was inhibited. In summary, uterine EZH2 expression is developmentally and hormonally regulated, and its loss causes aberrant uterine epithelial proliferation, uterine hypertrophy, and cystic endometrial hyperplasia, indicating a critical role in uterine development and function.


2007 ◽  
Vol 27 (6) ◽  
pp. 2014-2026 ◽  
Author(s):  
Feng Tie ◽  
Carl A. Stratton ◽  
Rebeccah L. Kurzhals ◽  
Peter J. Harte

ABSTRACT Polycomb group proteins mediate heritable transcriptional silencing and function through multiprotein complexes that methylate and ubiquitinate histones. The 600-kDa E(Z)/ESC complex, also known as Polycomb repressive complex 2 (PRC2), specifically methylates histone H3 lysine 27 (H3 K27) through the intrinsic histone methyltransferase (HMTase) activity of the E(Z) SET domain. By itself, E(Z) exhibits no detectable HMTase activity and requires ESC for methylation of H3 K27. The molecular basis for this requirement is unknown. ESC binds directly, via its C-terminal WD repeats (β-propeller domain), to E(Z). Here, we show that the N-terminal region of ESC that precedes its β-propeller domain interacts directly with histone H3, thereby physically linking E(Z) to its substrate. We show that when expressed in stable S2 cell lines, an N-terminally truncated ESC (FLAG-ESC61-425), like full-length ESC, is incorporated into complexes with E(Z) and binds to a Ubx Polycomb response element in a chromatin immunoprecipitation assay. However, incorporation of this N-terminally truncated ESC into E(Z) complexes prevents trimethylation of histone H3 by E(Z). We also show that a closely related Drosophila melanogaster paralog of ESC, ESC-like (ESCL), and the mammalian homolog of ESC, EED, also interact with histone H3 via their N termini, indicating that the interaction of ESC with histone H3 is evolutionarily conserved, reflecting its functional importance. Our data suggest that one of the roles of ESC (and ESCL and EED) in PRC2 complexes is to enable E(Z) to utilize histone H3 as a substrate by physically linking enzyme and substrate.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 525-525
Author(s):  
Daichi Inoue ◽  
Hirotaka Matsui ◽  
Hsin-An Hou ◽  
Wen-Chien Chou ◽  
Akiko Nagamachi ◽  
...  

Abstract Mutations in a variety of genes have been identified in MDS patients. Among them, mutations of additional sex combs-like 1 (ASXL1), found in 15-20% of MDS patients, have been identified as an independent poor prognostic factor. We previously demonstrated that C-terminal–truncating ASXL1 mutations (ASXL1-MT) inhibited myeloid differentiation and induced an MDS-like disease in mice after 1~2 years by inhibiting polycomb repressive complex 2–mediated methylation of histone H3K27 (Inoue et al. J Clin Invest. 2013). Given that ASXL1 mutations have been shown to be related to high-risk MDS or leukemic transformation, it is not clear how ASXL1-mutated MDS clones can transform into advanced MDS or AML. First, we examined genetic alterations in 368 WHO-defined MDS patients; ASXL1 mutations were detected in 64 of them (17.39%). Intriguingly, the patients with ASXL1 mutations had a significantly higher incidence of the concurrent SET binding protein 1 (SETBP1) mutation than those with the wild-type ASXL1 (6 out of 64, 9.38% vs. 2 out of 304, 0.66%, P=0.0005). Moreover, among ASXL1-mutated MDS patients, those harboring SETBP1 mutations had a higher incidence of leukemic transformation than those without (P=0.042), and MDS patients with both mutations had a significantly shorter overall survival compared to those without SETBP1 mutations (median, 10.5 vs. 22.5 months, P=0.046). In addition, we demonstrated that most SETBP1 mutations, such as D868N, occur in the PEST domain of the SKI homology region, preventing ubiquitination and subsequent proteasomal degradation. These results prompted us to investigate whether SETBP1 mutations play a critical role in the leukemic transformation of ASXL1-mutated MDS cells. In in vitro experiments, the expression of SETBP1-D868N enhanced myeloid colony formation of ASXL1-MT-transduced LSK cells, augmenting ASXL1-MT-induced differentiation blocking of 32Dcl3 cells. Of note, SETBP1-D868N collaborated with ASXL1-MT to induce AML after a short latency (median survival, 73 days) in a murine BMT model, while all mice expressing either ASXL1-MT or SETBP1-D868N survived for 6 months after transplantation (P<0.0001). Mice with leukemia induced by the combination of ASXL1-MT and SETBP1-D868N exhibited remarkable leukocytosis, anemia, thrombocytopenia, macrocytosis, hematosplenomegaly and hypercellular BM when compared to control mice. To clarify the molecular mechanism leading to leukemic transformation, we first investigated the Pp2a-Akt pathway because SETBP1 protein has been shown to interact with SET oncoprotein, resulting in Pp2a phosphorylation and subsequent inhibition. Consistent with previous reports using overexpression systems of SETBP1 wild type protein (SETBP1-WT), BM cells of leukemic mice displayed phosphorylated Pp2a and Akt compared to those of the control mice. Administration of FTY720, a Pp2a activator, efficiently repressed the growth rate in vitro and slightly improved the survival of serially transplanted mice. Next, using RNA-seq and GSEA, we demonstrated that SETBP1-D868N enriched hematopoietic stem cell-related genes and posterior Hoxa genes. Chromatin immnoprecipitation assay showed that both SETBP1-WT and SETBP1-D868N interacted with the promoter regions of Hoxa9 and Hoxa10, raising the possibility that a gain-of-function mutant of SETBP1 enhances transcription of these genes, directly or indirectly. Moreover, GSEA indicated global repression of the TGF-β signaling pathway and reciprocal upregulation of the Myc pathway in leukemic mice. In conclusion, our data provide evidence for the role of SETBP1 mutations in leukemic transformation and suggest the resulting deregulated pathways as potential therapeutic targets to prevent disease progression in MDS. Disclosures Harada: Kyowa Hakko Kirin Co., Ltd.: Research Funding.


2011 ◽  
Vol 21 (3) ◽  
pp. 112-117 ◽  
Author(s):  
Elizabeth Erickson-Levendoski ◽  
Mahalakshmi Sivasankar

The epithelium plays a critical role in the maintenance of laryngeal health. This is evident in that laryngeal disease may result when the integrity of the epithelium is compromised by insults such as laryngopharyngeal reflux. In this article, we will review the structure and function of the laryngeal epithelium and summarize the impact of laryngopharyngeal reflux on the epithelium. Research investigating the ramifications of reflux on the epithelium has improved our understanding of laryngeal disease associated with laryngopharyngeal reflux. It further highlights the need for continued research on the laryngeal epithelium in health and disease.


Sign in / Sign up

Export Citation Format

Share Document