scholarly journals Geographical Distribution and Environmental Correlates of Eleutherosides and Isofraxidin in Eleutherococcus senticosus from Natural Populations in Forests at Northeast China

Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 872 ◽  
Author(s):  
Guo ◽  
Wei ◽  
Li ◽  
Fan ◽  
Xu ◽  
...  

Non-wood forest products (NWFPs) derived from understory plants are attracting attention about sustainable forestry development. Geographical distribution and climate correlates of bioactive compounds are important to the regional management for the natural reserves of medical plants in forests. In this study, we collected Eleutherococcus senticosus individuals from 27 plots to map the special distribution of concentrations of eleutheroside B, eleutheroside E, and isofraxidin in forests of Northeast China. Compound concentrations in both aerial and underground organs were further detected for relationships with the average of 20-year records of temperature, precipitation, and relative humidity (RH). We found higher shoot eleutheroside B concentration in populations in northern and low-temperature regions (R = −0.4394; P = 0.0218) and in eastern and high-RH montane forests (R = 0.5003; P = 0.0079). The maximum-likelihood regression indicated that both RH (Pr > Chi-square, 0.0201) and longitude (Pr > Chi-square, 0.0026) had positive contributions to eleutheroside B concentration in roots, but precipitation had strongly negative contributions to the concentrations of eleutheroside E (Pr > Chi-square, 0.0309) and isofraxidin (Pr > Chi-square, 0.0014) in roots. Both geography and climate factors had effects on the special distribution of medical compounds in E. senticosus plants in natural populations in Northeast China. The management of NWFP plants at the regional scale should consider effects from climatic geography.

HortScience ◽  
2019 ◽  
Vol 54 (12) ◽  
pp. 2202-2208 ◽  
Author(s):  
Mingyuan Xu ◽  
Yingwei Wang ◽  
Qianbo Wang ◽  
Shenglei Guo ◽  
Yang Liu ◽  
...  

In this investigation, changes in growth and photosynthetic parameters were used to explain the effects of drought stress on morphology and photosynthesis of Eleutherococcus senticosus. Liquid chromatography (LC)-mass spectroscopy (MS) was used to determine the content of eleutheroside B, eleutheroside E, isofraxidin, hyperoside, rutin, and kaempferol under different drought stress conditions to explain the effects of drought stress on secondary metabolism of Eleuthero. Growth and photosynthetic physiological parameters showed that drought stress could inhibit the growth and photosynthesis of Eleuthero. The compounds studied showed the same cumulative trend in various organs of Eleuthero under different drought stress conditions, with the highest content in the moderate drought stress group and the lowest in the severe drought stress group. Among them, the content of eleutheroside B was found to be higher in the 5-year-old stem. The content of eleutheroside E was higher in the 3-year root. The content of isofraxidin was highest in the 5-year-old root. The content of hyperoside, rutin, and kaempferol were higher in the 3-year-old leaves. The results show that a wet soil environment was beneficial to growth and photosynthesis of Eleutherococcus senticosus, and moderate drought stress is conducive to the accumulation of its active ingredients.


Author(s):  
Kezang Choden ◽  
Bhagat Suberi ◽  
Purna Chettri

Forests are natural carbon reservoirs that play an important role in the global carbon cycle for storing large quantities of carbon in vegetation and soils. Carbon stored in pool helps in mitigating climate change by carbon sequestration. The vulnerable countries to changing climate such as Bhutan, Nepal, and India require a full understanding of carbon dynamics as well as baseline data on carbon stock potential to mitigate anticipated risks and vulnerabilities (RVs) through climate change. The scope of such RVs are trans boundary in nature, however, the comparative studies at regional scale are still scanty. Therefore, the aim of this review is to assess the carbon stock potentials of selected forest types in the eastern Himalayan area, with an emphasis on Bhutan, India, and Nepal. This review paper is based on published articles, information from websites and considerable data from National forestry reports of India and Bhutan; emphasizing on aboveground biomass and soil organic carbon stock. The review showed that carbon stock potential is highly dependent on stand density, above-ground biomass, species richness and forest types. The sub-tropical forest was found to have larger carbon capacity and sequestration potential. SOC concentration and tree biomass stocks were significantly higher at the high altitude where there is less human disturbance. In general, forest coverage has increased compare to previous year in Bhutan, India and Nepal which ultimately leads to higher carbon stock potential. It is mainly due to strong policies and different strategies for conservation of forest management have reduced mass destruction despite a growing population. Despite the rules, deforestation continues to occur at various scales. However, it can be stated that the government and citizens are working hard to increase carbon stock potential, mostly through afforestation and community forest creation. In addition, it is recommended to practice sustainable forest management, regulated and planned cutting of trees and proper forest products utilization.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4452 ◽  
Author(s):  
Aneta A. Ptaszyńska ◽  
Daniel Załuski

Pollinators, the cornerstones of our terrestrial ecosystem, have been at the very core of our anxiety. This is because we can nowadays observe a dangerous decline in the number of insects. With the numbers of pollinators dramatically declining worldwide, the scientific community has been growing more and more concerned about the future of insects as fundamental elements of most terrestrial ecosystems. Trying to address this issue, we looked for substances that might increase bee resistance. To this end, we checked the effects of plant-based adaptogens on honeybees in laboratory tests and during field studies on 30 honeybee colonies during two seasons. In this study, we have tested extracts obtained from: Eleutherococcus senticosus, Garcinia cambogia, Panax ginseng, Ginkgo biloba, Schisandra chinensis, and Camellia sinensis. The 75% ethanol E. senticosus root extract proved to be the most effective, both as a cure and in the prophylaxis of nosemosis. Therefore, Eleutherococcus senticosus, and its active compounds, eleutherosides, are considered the most powerful adaptogens, in the pool of all extracts that were selected for screening, for supporting immunity and improving resistance of honeybees. The optimum effective concentration of 0.4 mg/mL E. senticosus extract responded to c.a. 5.76, 2.56 and 0.07 µg/mL of eleutheroside B, eleutheroside E and naringenin, respectively. The effect of E. senticosus extracts on honeybees involved a similar adaptogenic response as on other animals, including humans. In this research, we show for the first time such an adaptogenic impact on invertebrates, i.e., the effect on honeybees stressed by nosemosis. We additionally hypothesised that these adaptogenic properties were connected with eleutherosides—secondary metabolites found exclusively in the Eleutherococcus genus and undetected in other studied extracts. As was indicated in this study, eleutherosides are very stable chemically and can be found in extracts in similar amounts even after two years from extraction. Considering the role bees play in nature, we may conclude that demonstrating the adaptogenic properties which plant extracts have in insects is the most significant finding resulting from this research. This knowledge might bring to fruition numerous economic and ecological benefits.


Forests ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 404 ◽  
Author(s):  
Xin Huang ◽  
Chunbo Huang ◽  
Mingjun Teng ◽  
Zhixiang Zhou ◽  
Pengcheng Wang

Understanding the spatial variation of forest productivity and its driving factors on a large regional scale can help reveal the response mechanism of tree growth to climate change, and is an important prerequisite for efficient forest management and studying regional and global carbon cycles. Pinus massoniana Lamb. is a major planted tree species in southern China, playing an important role in the development of forestry due to its high economic and ecological benefits. Here, we establish a biomass database for P. massoniana, including stems, branches, leaves, roots, aboveground organs and total tree, by collecting the published literature, to increase our understanding of net primary productivity (NPP) geographical trends for each tree component and their influencing factors across the entire geographical distribution of the species in southern China. P. massoniana NPP ranges from 1.04 to 13.13 Mg·ha−1·year−1, with a mean value of 5.65 Mg·ha−1·year−1. The NPP of both tree components (i.e., stem, branch, leaf, root, aboveground organs, and total tree) show no clear relationships with longitude and elevation, but an inverse relationship with latitude (p < 0.01). Linear mixed-effects models (LMMs) are employed to analyze the effect of environmental factors and stand characteristics on P. massoniana NPP. LMM results reveal that the NPP of different tree components have different sensitivities to environmental and stand variables. Appropriate temperature and soil nutrients (particularly soil available phosphorus) are beneficial to biomass accumulation of this species. It is worth noting that the high temperature in July and August (HTWM) is a significant climate stressor across the species geographical distribution and is not restricted to marginal populations in the low latitude area. Temperature was a key environmental factor behind the inverse latitudinal trends of P. massoniana NPP, because it showed a higher sensitivity than other factors. In the context of climate warming and nitrogen (N) deposition, the inhibition effect caused by high temperatures and the lack or imbalance of soil nutrients, particularly soil phosphorus, should be paid more attention in the future. These findings advance our understanding about the factors influencing the productivity of each P. massoniana tree component across the full geographical distribution of the species, and are therefore valuable for forecasting climate-induced variation in forest productivity.


2009 ◽  
Vol 48 (4) ◽  
pp. 742-757 ◽  
Author(s):  
Shawn P. Serbin ◽  
Christopher J. Kucharik

Abstract Results from the generation of a multidecadal gridded climatic dataset for 57 yr (1950–2006) of daily and monthly precipitation (PTotal), maximum temperature (Tmax), and minimum temperature (Tmin) are presented for the important agricultural and forest products state of Wisconsin. A total of 176 climate stations were used in the final gridded dataset that was constructed at 8-km (5.0′) latitude–longitude resolution using an automated inverse distance weighting interpolation. Accuracy statistics for the interpolated data were based on a rigorous validation step using 104 first- and second-order climate observation stations withheld in the production of the gridded dataset. The mean absolute errors (MAE) for daily minimum and maximum temperatures averaged 1.51° and 1.31°C, respectively. Daily precipitation errors were also reasonable, ranging from −0.04 to 0.08 mm, on average, across all climate divisions in the state with an overall statewide MAE of 1.37 mm day−1. Correlation analysis suggested a high degree of explained variation for daily temperature (R2 ≥ 0.97) and a moderate degree for daily precipitation (R2 = 0.66), whereby the realism improved considerably for monthly precipitation accumulation totals (R2 = 0.87). Precipitation had the best interpolation accuracy during the winter months, related to large-scale, synoptic weather systems, and accuracy was at a minimum in the wetter summer months when more precipitation originates from local-to-regional-scale convective forcing. Overall the grids showed coherent spatial patterns in temperature and precipitation that were expected for this region, such as the latitudinal gradient in temperature and longitudinal gradient in precipitation across the state. The grids will prove useful for a variety of regional-scale research and ecosystem modeling studies.


Author(s):  
T. Mohanty ◽  
P. P. Doke ◽  
K. H. Patil

Background: Geographical differences in number of COVID-19 cases and death are affected by population density, age, gender distribution and mitigation measures like social distancing etc. The aim of this study was to determine the geographical distribution of number of cases of covid-19 in different areas of Maharashtra. The investigator wants to know, which area, which age group and which gender has been affected the most by COVID-19 along with the effect of lockdown.Methods: Area and population of all the COVID-19 affected area was collected and area wise number of cases till 31st May 2020 was considered. Association between number of COVID-19 cases and population of areas was calculated and gender-wise and age-wise case distribution was also calculated.Results: Cases are more in urban areas mainly in corporation (Chi square=114441; p<0.0001). Age group 31-40 years’ is most affected (11.5 per 100,000 population affected). Young adults as well males were affected most and even though population of children is quite big, they remained less affected (chi square=22117).Conclusions: This COVID-19 is a disease of urban area primarily affecting corporation areas. High population density and overcrowding are mainly responsible for initial phase of this disease only in corporation area. Strict lockdown and other social measures decreased both transmission and mortality rate.


Sign in / Sign up

Export Citation Format

Share Document