scholarly journals Genetic Markers for Species Conservation and Timber Tracking: Development of Microsatellite Primers for the Tropical African Tree Species Prioria balsamifera and Prioria oxyphylla

Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 1037 ◽  
Author(s):  
Vanden Abeele ◽  
Hardy ◽  
Beeckman ◽  
Ilondea ◽  
Janssens

Research Highlights: Two novel sets of polymorphic microsatellite markers were developed for Prioria balsamifera and Prioria oxyphylla through high-throughput sequencing. Validation in two populations of each species proved the utility of the developed primers to estimate genetic diversity at population level. Background and Objectives: Prioria balsamifera and Prioria oxyphylla are tropical tree species from Central Africa. They produce a high-quality, multi-purpose timber that is of great interest to the international market. Prioria balsamifera has been included as ‘endangered’ on the IUCN Red List of Threatened Species. In order to set up adequate management plans and facilitate timber tracking, knowledge on the genetic diversity at population level is needed. Therefore, we aim to develop microsatellite markers that can be used for species conservation, forensics, plant breeding and population genetics studies. Materials and Methods: Genomic DNA of P. balsamifera and P. oxyphylla was sequenced on an Illumina NextSeq platform (Illumina Inc., San Diego, CA, USA), generating 829,421 and 772,018 paired-end reads that contained 7148 and 7004 microsatellite sequences, respectively. The QDD-pipeline was used to design primers, which were tested for amplification in two populations of each species. Cross-species amplification was tested in all seven African Prioria species. Results: For P. balsamifera, 16 polymorphic microsatellite markers were developed and combined in three multiplexes. Inbreeding appeared to be absent but genetic diversity was low in both populations. For P. oxyphylla, 15 polymorphic microsatellite markers were developed and combined in three multiplexes. Genetic diversity was low in both populations and estimated null allele frequencies were high for multiple loci. Cross-species amplification tests demonstrated the occurrence of conserved loci that amplified for most of the African Prioria species. Conclusions: The microsatellite markers prove to be useful for estimating genetic diversity at population level. These novel markers can be used to study gene flow and spatial genetic structure in Prioria species, which is needed to set up proper conservation guidelines and to prevent genetic erosion.

BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yingying Zhao ◽  
Xiaochen Zhu ◽  
Zhi Li ◽  
Weibin Xu ◽  
Jing Dong ◽  
...  

Abstract Background The Chinese grass shrimp, Palaemonetes sinensis, is an economically important freshwater shrimp in China, and the study of genetic diversity and structure can positively contribute to the exploration of germplasm resources and assist in the understanding of P. sinensis aquaculture. Microsatellite markers are widely used in research of genetic backgrounds since it is considered an important molecular marker for the analyses of genetic diversity and structure. Hence, the aim of this study was to evaluate the genetic diversity and structure of wild P. sinensis populations in China using the polymorphic microsatellite makers from the transcriptome. Results Sixteen polymorphic microsatellite markers were developed for P. sinensis from transcriptome, and analyzed for differences in genetic diversity and structure in multiple wild P. sinensis populations in China. Totally of 319 individual shrimps from seven different populations were genotyped to find that allelic polymorphisms varied in two to thirteen alleles seen in the entire loci. Compared to other populations analyzed, the two populations including LD and SJ showed lower genetic diversity. Both the genetic distance (D) and Wrights fixation index (FST) comparing any two populations also indicated that LD and SJ populations differed from the other five populations. An UPGMA tree analysis showed three main clusters containing SJ, LD and other populations which were also confirmed using STRUCTURE analysis. Conclusion This is the first study where polymorphic microsatellite markers from the transcriptome were used to analyze genetic diversity and structures of different wild P. sinensis populations. All the polymorphic microsatellite makers are believed useful for evaluating the extent of the genetic diversity and population structure of P. sinensis. Compared to the other five populations, the LD and SJ populations exhibited lower genetic diversity, and the genetic structure was differed from the other five populations. Therefore, they needed to be protected against further declines in genetic diversity. The other five populations, LP, LA, LSL, LSY and LSH, are all belonging to Liaohe River Drainage with a relatively high genetic diversity, and hence can be considered as hot spots for in-situ conservation of P. sinensis as well as sources of desirable alleles for breeding values.


2021 ◽  
Vol 48 (3) ◽  
pp. 3031-3036
Author(s):  
Mengyun Qin ◽  
Ningning Zhang ◽  
Shixin Zhu ◽  
Caipeng Yue ◽  
Jinyong Huang ◽  
...  

2016 ◽  
Vol 65 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Y. C. Miao ◽  
Z. J. Zhang ◽  
J. R. Su

Abstract Taxus yunnanensis, which is an endangered tree that is considered valuable because it contains the effective natural anticancer metabolite taxol and heteropolysaccharides, has long suffered from severe habitat fragmentation. In this study, the levels of genetic diversity in two populations of 136 individuals were analyzed based on eleven polymorphic microsatellite loci. Our results suggested that these two populations were characterized by low genetic diversity (NE = 2.303/2.557; HO = 0.168/0.142; HE = 0.453/0.517), a population bottleneck, a low effective population size (Ne = 7/9), a high level of inbreeding (FIS = 0.596/0.702), and a weak, but significant spatial genetic structure (Sp = 0.001, b = −0.001*). Habitat fragmentation, seed shadow overlap and limited seed and pollen dispersal and potential selfing may have contributed to the observed gene tic structure. The results of the present study will enable development of practical conservation measures to effectively conserve the valuable genetic resources of this endangered plant.


Forests ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 24
Author(s):  
Seung-Beom Chae ◽  
Hyo-In Lim ◽  
Yong-Yul Kim

The restoration of damaged or disrupted forests with genetically appropriate restoration planting material that can adapt to future environmental conditions will ensure the conservation of forest genetic resources. Abies koreana is endemic to the Republic of Korea, with declining populations under current environmental changes. In this study, we examined the genetic diversity of its largest population growing on Mt. Hallasan to determine the sampling size of planting material from the population that will ensure 95% coverage of alleles in the population. We evaluated the genetic diversity and spatial genetic structure of three subpopulations of A. koreana on Mt. Hallasan. A total of 456 samples were evaluated using 10 microsatellites. The observed heterozygosity and expected heterozygosity were 0.538 and 0.614 at the population level, respectively. The differences among the subpopulations accounted for 4% of the total variance. Intervals between individuals of the sample to be extracted were based on the two-target distance (5 and 10 m) inferred from the spatial genetic structure. Through random sampling methods considering the target distance, we showed that genetic diversity can be captured by obtaining at least 35 individuals in the population of A. koreana on Mt. Hallasan.


2016 ◽  
Vol 43 (2) ◽  
pp. 174-180 ◽  
Author(s):  
Yurry Um ◽  
Mei-Lan Jin ◽  
Yi Lee ◽  
Mok Hur ◽  
Seon Woo Cha ◽  
...  

2014 ◽  
Vol 63 (1-6) ◽  
pp. 109-112 ◽  
Author(s):  
Dan-Dan Zhang ◽  
Pi Luo ◽  
Ying Chen ◽  
Zheng-Feng Wang ◽  
Wan-Hui Ye ◽  
...  

Abstract Engelhardia roxburghiana is a common half evergreen tree with a wide distribution in southeast Asia. Despite its ecological and pharmaceutical values, its genetic diversity is poorly studied. Our objective was to develop nuclear microsatellite markers to investigate the level of genetic diversity within and among populations in the future. Using the microsatellite-enriched library and PCR-based screening method, 12 microsatellite markers were developed and showed polymorphism in a population. The number of alleles per locus for these 12 microsatellites ranged from four to 15. The observed and expected heterozygosities ranged from 0.358 to 0.897 and from 0.369 to 0.886, respectively. The developed microsatellites will be useful for studying genetic diversity and population structure in E. roxburghiana.


2019 ◽  
Author(s):  
James Raymond Peter Worth ◽  
K. S. Chang ◽  
Y.-H. Ha ◽  
Aili Qin

Abstract Objective: Design polymorphic microsatellite loci that will be useful for studies of the genetic diversity, structure and reproduction in the Japanese endemic conifer Thuja standishii and test the transferability of these loci to the two other East Asian species, T. sutchuenensis and T. koraiensis . Results: Fifteen loci were developed which displayed 3 to 21 alleles per locus (average = 9.2) among 97 samples from three populations of T. standishii . Observed heterozygosity for all samples varied between 0.33-0.75 (average 0.54) while expected heterozygosity values were higher with an average over the 15 loci of 0.62 (0.37-0.91). Low multi-locus probability of identity values (< 0.00001) indicate that these markers will be effective for identifying individuals derived from clonal reproduction. All 15 loci amplified in 13 samples of T. sutchuenensis , the sister species of T. standishii , with 1 to 11 alleles per locus (average = 4.33) while 13 loci amplified in four samples of the more distantly related T. koraiensis with 1 to 5 alleles per locus (average = 2.15).


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1324
Author(s):  
Paola Fabiana Fazzi-Gomes ◽  
Jonas da Paz Aguiar ◽  
Diego Marques ◽  
Gleyce Fonseca Cabral ◽  
Fabiano Cordeiro Moreira ◽  
...  

The Amazonian symbol fish Arapaima gigas is the only living representative of the Arapamidae family. Environmental pressures and illegal fishing threaten the species’ survival. To protect wild populations, a national regulation must be developed for the management of A. gigas throughout the Amazon basin. Moreover, the reproductive genetic management and recruitment of additional founders by aquaculture farms are needed to mitigate the damage caused by domestication. To contribute to the sustainable development, we investigated the genetic diversity of wild and cultivated populations of A. gigas and developed a panel composed by 12 microsatellite markers for individual and population genetic tracing. We analyzed 368 samples from three wild and four farmed populations. The results revealed low rates of genetic diversity in all populations, loss of genetic diversity and high inbreeding rates in farmed populations, and genetic structuring among wild and farmed populations. Genetic tracing using the 12 microsatellite markers was effective, and presented a better performance in identifying samples at the population level. The 12-microsatellite panel is appliable to the legal aspects of the trade of the A. gigas, such as origin discrimination, reproductive genetic management by DNA profiling, and evaluation and monitoring of genetic diversity.


Sign in / Sign up

Export Citation Format

Share Document