scholarly journals Advance Regeneration of Norway Spruce and Scots Pine in Hemiboreal Forests in Latvia

Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Solveiga Luguza ◽  
Guntars Snepsts ◽  
Janis Donis ◽  
Iveta Desaine ◽  
Endijs Baders ◽  
...  

Continuous cover forestry (CCF) aims to emulate small natural disturbances and take advantage of natural regeneration. To implement these management practices successfully, knowledge of advance regeneration under the canopy in different conditions is crucial. Therefore, the aim of this study was to assess the influence of stand inventory parameters of canopy layer (age, basal area, height, and density) on the probability and density of advance regeneration of the Norway spruce (Picea abies (L.) H. Karst.) and Scots pine (Pinus sylvestris L.) in hemiboreal forests in Latvia. The data were obtained from the National Forest Inventory, from a total of 879 plots. In the study, only Norway spruce or Scots pine dominated stands were used and the sampled stand age ranged from 21 to 218 years. The probability of advance regeneration differed between stands dominated by Scots pine versus Norway spruce. The probability and density of the advance regeneration of Norway spruce were positively linked to increased stand age, whereas the probability of the advance regeneration of Scots pine was negatively linked to the basal area of the stand. In stands dominated by Norway spruce and Scots pine on mesic soils, the advance regeneration of Norway spruce has a high density, whereas the advance regeneration of Scots pine is sporadic and scarce.

2004 ◽  
Vol 34 (1) ◽  
pp. 131-140 ◽  
Author(s):  
Lauri Mehtätalo

A height–diameter (H–D) model for Norway spruce (Picea abies (L.) Karst.) was estimated from longitudinal data. The Korf growth curve was used as the H–D curve. Firstly, H–D curves for each stand at each measurement time were fitted, and the trends in the parameters of the H–D curve were modeled. Secondly, the trends were included in the H–D model to estimate the whole model at once. To take the hierarchy of the data into account, a mixed-model approach was used. This makes it possible to calibrate the model for a new stand at a given point in time using sample tree height(s). The heights may be from different points in time and need not be from the point in time being predicted. The trends in the parameters of the H–D curve were not estimated as a function of stand age but as a function of the median diameter of basal area weighted diameter distribution (dGm). This approach was chosen because the stand ages may differ substantially among stands with similar current growth patterns. This is true especially with shade-tolerant tree species, which can regenerate and survive for several years beneath the dominant canopy layer and start rapid growth later. The growth patterns in stands with a given dGm, on the other hand, seem not to vary much. This finding indicates that the growth pattern of a stand does not depend on stand age but on mean tree size in the stand.


2017 ◽  
pp. 31-54
Author(s):  
Martin Bobinac ◽  
Sinisa Andrasev ◽  
Andrijana Bauer-Zivkovic ◽  
Nikola Susic

The paper studies the effects of two heavy selection thinnings on the increment of Norway spruce trees exposed to ice and snow breaks in eastern Serbia. In a thinning that was carried out at 32 years of age, 556 candidates per hectare were selected for tending, and at the age of 40, of the initial candidates, 311 trees per hectare (55.9%) were selected as future trees. In all trees at 41-50 age period, diameter increment was higher by 31%, basal area increment by 64% and volume increment by 67% compared to 32-40 age period. The collective of indifferent trees is significantly falling behind compared to future trees in terms of increment values in both observed periods. However, the value of diameter, basal area and volume increments, of the collective of "comparable" indifferent trees are lower in comparison to the values of increments of future trees by 10-15% in the 32-40 age period, and by 15-21% in the 41-50 age period and there are no significant differences. The results show that heavy selective thinnings, initially directed at a larger number of candidates for tending at stand age that does not differ much from the period of carrying out first "commercial" thinnings, improve the growth potential of future and indifferent trees, where it is rational to do the tree replacement for the final crop in "susceptible" growth stage to snow and ice breaks.


Forests ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 495 ◽  
Author(s):  
Lars Drössler ◽  
Eric Agestam ◽  
Kamil Bielak ◽  
Małgorzata Dudzinska ◽  
Julia Koricheva ◽  
...  

Pine-spruce forests are one of the commonest mixed forest types in Europe and both tree species are very important for wood supply. This study summarized nine European studies with Scots pine and Norway spruce where a mixed-species stand and both monocultures were located in an experimental set-up. Overyielding (where growth of a mixed stand was greater than the average of both monocultures) was relatively common and often ranged between 0% and 30%, but could also be negative at individual study sites. Each individual site demonstrated consistent patterns of the mixing effect over different measurement periods. Transgressive overyielding (where the mixed-species stand was more productive than either of the monocultures) was found at three study sites, while a monoculture was more productive on the other sites. Large variation between study sites indicated that the existing experiments do not fully represent the extensive region where this mixed pine-spruce forest can occur. Pooled increment data displayed a negative influence of latitude and stand age on the mixing effect of those tree species in forests younger than 70 years.


2001 ◽  
Vol 31 (2) ◽  
pp. 292-301 ◽  
Author(s):  
B Berg ◽  
V Meentemeyer

Litter fall data was available for 64 sites in Europe, most of them in Fennoscandia. Included were 48 sites with pine (Pinus spp.), mainly Scots pine (Pinus sylvestris L.), and 16 sites with spruce (Picea spp.), mainly Norway spruce (Picea abies (L.) Karst.). Regressions were calculated for needle and total litter fall against a set of climatic parameters, and the best simple relationships were obtained with annual actual evapotranspiration (AET) and other parameters including temperature, whereas for example, precipitation gave lower r values. For needle litter fall and AET using all data, the R2adj value was 0.635 (n = 64), and for needle litter for pine and spruce separately, the R2adj were 0.576 (n = 48) and 0.775 (n = 16), respectively. AET plus stand age gave highly significant relationships for both coniferous genera combined (R2adj = 0.683), and for pine and spruce separately the corresponding values were 0.655 and 0.843, respectively. Using all available data we found highly significant relationships between needle litter fall and total litter fall. For Fennoscandia, litter fall for Scots pine and Norway spruce were compared. AET versus needle litter fall gave highly significant relationships for Scots pine (R2adj = 0.448, n = 34) and for Norway spruce (R2adj = 0.678, n = 13); the relationships were significantly different from each other.


2004 ◽  
Vol 188 (1-3) ◽  
pp. 211-224 ◽  
Author(s):  
A Lehtonen ◽  
R Mäkipää ◽  
J Heikkinen ◽  
R Sievänen ◽  
J Liski

2012 ◽  
Vol 163 (6) ◽  
pp. 210-221 ◽  
Author(s):  
Caroline Heiri ◽  
Urs-Beat Brändli ◽  
Harald Bugmann ◽  
Peter Brang

Do strict forest reserves feature more naturalness than the Swiss forest? In natural forest reserves (NFR), forests develop in the absence of direct human interference, primarily management. This increases their naturalness and should – in the long run – allow forests to regain primeval attributes. Based on stand structural data from the third National Forest Inventory (NFI) and 25 NFR in Switzerland, we investigate 1) whether NFR feature more naturalness than managed forests, 2) whether the naturalness of Swiss forests increases with the time elapsed since the cessation of management, and 3) to what extent NFR differ from Swiss forests that have not been managed during several decades. Thereby, we focus on the four main forest types beech, silver fir-beech, silver fir-Norway spruce and Norway spruce forests, and furthermore group the data according to the time since the last intervention (0–20, 21–50 and > 50 years.). The structural features investigated differ only slightly between NFR and managed forest (0–20 years). NFR feature a higher abundance of “giant” trees (dbh ≥ 80 cm), higher stem numbers and greater basal area, and thus a higher growing stock. The abundance of snags, however, is indistinguishable between the two types of forests. Naturalness in Swiss forests increases only slightly with time since the last intervention, indicated by a higher abundance of small snags and a slightly higher number of giant trees. By contrast, clear differences can be seen between NFR in which no intervention has taken place for at least 50 years, and other forests abandoned for a similarly long time, with NFR showing lower stem numbers, greater basal area and higher numbers of giant trees. Many of the investigated reserves are still affected by former management and are – from the point of view of primeval forest dynamics – still quite “young”. According to their naturalness, the NFR range between managed and primeval forests, although to date they are still closer to the former. Nevertheless, the differences found in our study indicate a steady development of the NFR towards stand structures that are characteristic of primeval forests.


2005 ◽  
Vol 35 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Kjell Karlsson ◽  
Lennart Norell

The probability that an individual tree will remain in even-aged Norway spruce (Picea abies (L.) Karst.) stands subjected to different thinning programmes was modelled, using data from a thinning experiment established in 25 localities in southern Sweden. A logistic regression approach was used to predict the probability and the Hosmer–Lemeshow goodness-of-fit test to evaluate the fit. Diameter at breast height (DBH), quadratic mean DBH, thinning intensity, thinning quotient, basal area, number of stems per hectare, stand age, number of thinnings, and site index were used as explanatory variables. Separate analyses for stands thinned from below, stands thinned from above, and unthinned stands were performed. The modelled probability graphs for trees not being removed, plotted against their diameter at breast height, had clear S-shapes for both unthinned stands and stands thinned from below. The graph for stands thinned from above was bell-shaped.


Silva Fennica ◽  
2020 ◽  
Vol 54 (5) ◽  
Author(s):  
Jouni Siipilehto ◽  
Micky Allen ◽  
Urban Nilsson ◽  
Andreas Brunner ◽  
Saija Huuskonen ◽  
...  

New mortality models were developed for the purpose of improving long-term growth and yield simulations in Finland, Norway, and Sweden and were based on permanent national forest inventory plots from Sweden and Norway. Mortality was modelled in two steps. The first model predicts the probability of survival, while the second model predicts the proportion of basal area in surviving trees for plots where mortality has occurred. In both models, the logistic function was used. The models incorporate the variation in prediction period length and in plot size. Validation of both models indicated unbiased mortality rates with respect to various stand characteristics such as stand density, average tree diameter, stand age, and the proportion of different tree species, Scots pine ( L.), Norway spruce ( (L.) Karst.), and broadleaves. When testing against an independent dataset of unmanaged spruce-dominated stands in Finland, the models provided unbiased prediction with respect to stand age.Pinus sylvestrisPicea abies


Sign in / Sign up

Export Citation Format

Share Document