scholarly journals Coarse Woody Debris’ Invertebrate Community is Affected Directly by Canopy Type and Indirectly by Thinning in Mixed Scots Pine—European Beech Forests

Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 975 ◽  
Author(s):  
Ximena Herrera-Alvarez ◽  
Juan A. Blanco ◽  
J. Bosco Imbert ◽  
Willin Alvarez ◽  
Gabriela Rivadeneira-Barba

Research Highlights: Thinning and tree species alter the forest floor microclimate by modifying canopy cover, radiation, wind, and humidity. Thus, forest management can directly influence the edaphic mesofauna responsible for decomposing coarse woody debris (CWD). Background and Objectives: This research was carried out in the Southwestern Pyrenees Mountains (Northern Spain) and aimed to determine the influence of forest thinning and canopy type (pure Pinus sylvestris L. or a mix of P. sylvestris and Fagus sylvatica L.) on CWD colonization by edaphic fauna. Materials and Methods: CWD samples were collected belonging to intermediate and advanced decomposition stages, approximately 10 cm long and 5 cm in diameter. Using a design of three thinning intensities (0%, 20%, and 40% of basal area removed), with three replications per treatment (nine plots in total), four samples were taken per plot (two per canopy type) to reach 36 samples in total. Meso- and macrofauna were extracted from CWD samples with Berlese–Tullgren funnels, and individuals were counted and identified. Results: 19 taxonomic groups were recorded, the most abundant being the mesofauna (mites and Collembola). Mixed canopy type had a significant positive influence on richness, whereas advanced decay class had a positive significant influence on total abundance and richness. In addition, there were non-significant decreasing trends in richness and abundance with increasing thinning intensity. However, interactions among thinning intensity, canopy type, and decay class significantly affected mesofauna. Furthermore, some taxonomic groups showed differential responses to canopy type. CWD water content was positively correlated with total invertebrate abundance and some taxonomic groups. Our results suggest that stand composition has the potential to directly affect invertebrate communities in CWD, whereas stand density influence is indirect and mostly realized through changes in CWD moisture. As mesofauna is related to CWD decomposition rates, these effects should be accounted for when planning forest management transition from pure to mixed forests.

2020 ◽  
Vol 3 (1) ◽  
pp. 88
Author(s):  
Ximena Herrera-Alvarez ◽  
Juan A. Blanco ◽  
J. Bosco Imbert ◽  
Willin Alvarez ◽  
Gabriela Rivadeneira-Barba

Background and Objectives: The forest in the Southwestern Pyrenees Mountains (Northern Spain) is mainly composed of pure Pinus sylvestris L. or a mix of P. sylvestris and Fagus sylvatica L. The most common forest management technique to harvest pine is the application of forest thinning with different intensities. It promotes a change in the forest composition and structure. Taking into consideration this region as a site specific research about this topic, we aimed to understand the CWD invertebrate composition response to different thinning intensities and canopy type of these tree species. Materials and Methods: CWD samples were collected belonging to intermediate and advanced decay classes, approximately 10 cm long and 5 cm in diameter. Using a design of three thinning intensities (0%, 20%, and 40% of basal area removed), with three replications per treatment (nine plots in total), four samples were taken per plot (two per canopy type) to reach 36 samples in total. Meso- and macrofauna were extracted from CWD samples with Berlese–Tullgren funnels, and individuals were counted and identified. Results: Most of the taxonomic groups belonged to mesofauna, mainly to Acari and Collembola orders. On the other hand, the macrofauna represented a minimum percentage of the community composition. Our results indicated that although thinning intensities did not significantly affect the invertebrate community, canopy type and CWD water content influenced significantly. It is imperative to consider in forest management the responses of canopy type and thinning intensities in CWD water content, this disturbance could also slow down the organic matter decomposition process in the soil, thus affecting in the long term the natural cycle of nutrients.


2000 ◽  
Vol 78 (8) ◽  
pp. 995-1001 ◽  
Author(s):  
J E Smith ◽  
R Molina ◽  
M MP Huso ◽  
M J Larsen

Yellow mycelia and cords of Piloderma fallax (Lib.) Stalp. were more frequently observed in old-growth stands than in younger managed stands of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). Piloderma fallax frequency and percent cover data were collected from 900 plots in three replicate stands in each of three forest age classes over 2 years in both spring and fall. Piloderma fallax is strongly associated with stand age; it occurred in 57% of plots in old-growth, 6% of rotation-age, and 1% of young stands. Presence of Piloderma fallax was related to the percent cover of coarse woody debris (CWD) in decay class 5. Piloderma fallax was approximately 2.5 times more likely to occur in a plot with CWD decay class 5 present than in plots without. The probability that it would occur in a plot increased by approximately 20% for every 10% increase in percent cover of CWD decay class 5. However, the percent cover of Piloderma fallax was not strongly related to the percent cover of CWD in decay class 5. Frequency of occurrence did not differ among sampling times. Occurrence of Piloderma fallax may indicate suitable substrate for ectomycorrhizal fungi associated with CWD and may be important in forest management for the maintenance of biodiversity and old-growth components in young managed stands.Key words: Piloderma fallax, coarse woody debris, Pseudotsuga menziesii, forest management, ectomycorrhizal fungi, biodiversity.


2002 ◽  
Vol 32 (12) ◽  
pp. 2094-2105 ◽  
Author(s):  
Shawn Fraver ◽  
Robert G Wagner ◽  
Michael Day

We examined the dynamics of down coarse woody debris (CWD) under an expanding-gap harvesting system in the Acadian forest of Maine. Gap harvesting treatments included 20% basal area removal, 10% basal area removal, and a control. We compared volume, biomass, diameter-class, and decay-class distributions of CWD in permanent plots before and 3 years after harvest. We also determined wood density and moisture content by species and decay class. Mean pre-harvest CWD volume was 108.9 m3/ha, and biomass was 23.22 Mg/ha. Both harvesting treatments increased the volume and biomass of non-decayed, small-diameter CWD (i.e., logging slash), with the 20% treatment showing a greater increase than the 10% treatment and both treatments showing greater increases than the control. Post-harvest reduction of advanced-decay CWD due to mechanical crushing was not evident. A mean of 18.48 m3 water/ha (1.85 L/m2) demonstrates substantial water storage in CWD, even during an exceptionally dry sampling period. The U-shaped temporal trend in CWD volume or biomass seen in even-aged stands may not apply to these uneven-aged stands; here, the trend is likely more complex because of the superimposition of small-scale natural disturbances and repeated silvicultural entries.


2018 ◽  
Vol 48 (4) ◽  
pp. 399-411 ◽  
Author(s):  
Praveen Kumar ◽  
Han Y.H. Chen ◽  
Sean C. Thomas ◽  
Chander Shahi

Although the importance of coarse woody debris (CWD) to understory species diversity has been recognized, the combined effects of CWD decay and substrate species on abundance and species diversity of epixylic vegetation have received little attention. We sampled a wide range of CWD substrate species and decay classes, as well as forest floors in fire-origin boreal forest stands. Percent cover, species richness, and evenness of epixylic vegetation differed significantly with both CWD decay class and substrate species. Trends in cover, species richness, and evenness differed significantly between nonvascular and vascular taxa. Cover, species richness, and species evenness of nonvascular species were higher on CWD, whereas those of vascular plants were higher on the forest floor. Epixylic species composition also varied significantly with stand ages, overstory compositions, decay classes, substrate species, and their interactions. Our findings highlight strong interactive influences of decay class and substrate species on epixylic plant communities and suggest that conservation of epixylic diversity would require forest managers to maintain a diverse range of CWD decay classes and substrate species. Because stand development and overstory compositions influence CWD decay classes and substrate species, as well as colonization time and environmental conditions in the understory, our results indicate that managed boreal landscapes should consist of a mosaic of different successional stages and a broad suite of overstory types to support diverse understory plant communities.


Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 743 ◽  
Author(s):  
Mariusz Bembenek ◽  
Petros A. Tsioras ◽  
Zbigniew Karaszewski ◽  
Bogna Zawieja ◽  
Ewa Bakinowska ◽  
...  

Thinning is one of the most important tools of forest management, although thinning operations require the use of machines which ultimately cause damage to the remaining stand. The level of damage largely depends on the human factor, and a tired, less focused operator will create more injuries in the forest. With this in mind, the objectives of this research were to find out whether the probability of tree damage caused by an operator is also affected by: (1) the part of the day (dawn/day/dusk/night), and (2) the cumulative shift time. The research was carried out in pure pine stands of different ages, density and thinning intensities. Sample plots were selected that had an increasing number of trees per hectare and growing thinning intensities were applied. The same Komatsu 931.1 harvester was used for the thinning operations in each stand. In all the age classes combined, 5.41% of the remaining trees were wounded. There was a significant influence of the part of the day on the percentage of damaged trees, which was positively correlated with the cumulative shift time. Stand conditions, such as age class and stand density, as well as thinning characteristics—thinning intensity, number of harvested trees and productivity—have different effects on the distribution of damage intensity and on probability. The results may improve the planning of operators’ work shifts in forests of various ages and densities, allowing harvester productivity to be maintained while at the same time inflicting the lowest possible level of damage.


Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 632 ◽  
Author(s):  
Fabian Schwaiger ◽  
Werner Poschenrieder ◽  
Peter Biber ◽  
Hans Pretzsch

The control and maintenance of species composition of mixed stands is a highly relevant objective of forest management in order to provide multifunctionality and climatic resilience. In contrast to this requirement there is, however, an evident lack of quantitative methods for mixture regulation. In this context, we propose an approach for the regulation of mixture proportions that has been implemented in a forest management model. The approach considers species-specific growth characteristics and takes into account the mixing effect on stand density. We present five exemplary simulations that apply the regulation. Each simulation maintains one of five desired species compositions. In these simulations, we consider the species European beech and Norway spruce under good site conditions, thus representing the most prominent mixed stands in Central Europe. Based on this model experiment, we analyze the potential benefit of controlled mixing regulation for achieving desired levels and combinations of ecosystem service provision, in particular productivity, diversity, and groundwater recharge. We found that a constant 50% basal area share of beech (equivalent growing space share of 80% to 70% depending on stand age) provided the most balanced supply of ecosystem services. Prominently, groundwater recharge considerably decreased when beech basal area shares were held below 50%. We discuss the ecological and practical implications of the regulation approach and different mixing shares.


1994 ◽  
Vol 24 (9) ◽  
pp. 1811-1817 ◽  
Author(s):  
James L. Marra ◽  
Robert L. Edmonds

Carbon dioxide evolution rates for downed logs (coarse woody debris) and the forest floor were measured in a temperate, old-growth rain forest in Olympic National Park, Washington, using the soda lime trap method. Measurements were taken every 4 weeks from October 22, 1991, to November 19, 1992. Respiration rates for Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) and western hemlock (Tsugaheterophylla (Raf.) Sarg.), logs were determined for decay classes 1–2, 3, and 5 in two diameter classes. Overall, western hemlock logs respired at a rate 35% higher (4.37 g CO2•m−2•day−1) than Douglas-fir logs (3.23 g CO2•m−2•day−1). Respiration rates for decay class 1–2 logs of both species were similar to decay class 5 logs (4.46 and 4.07 g CO2•m−2•day−1, respectively), but decay class 3 logs respired at a lower rate (3.23 g CO2•m−2•day−1). Seasonal patterns of respiration rates occurred, particularly for decay class 1 and 2 western hemlock logs where monthly averages ranged from a low of 2.67 g CO2•m−2•day−1 in February 1992 to a high of 8.30 g CO2•m−2•day−1 in September 1992. Rates for decay class 1–2 western hemlock logs were greater than those from the forest floor, which ranged from 3.42 to 7.13 g CO2•m−2•day−1. Respiration rates were depressed in late July and August compared with fall and spring owing to the summer drought characteristic of the Pacific Northwest. Large-diameter western hemlock logs in decay class 1–2 had higher respiration rates than small-diameter logs, whereas large-diameter decay class 3 western hemlock logs had lower respiration rates than small-diameter logs.


2020 ◽  
Vol 29 (3) ◽  
pp. e021
Author(s):  
Ovidiu Copoț ◽  
Cătălin Tănase

Aim of the study: The main objective of this study was to find the factors which best explains the wood-inhabiting fungal species’ richness in beech and oak-dominated forests.Area of study: We focused on broadleaved and mixed forests found in Northeastern Romania.Materials and methods: 59 plots were randomly set up in broadleaved and mixed forest stands, in which vegetation structure, composition, and topoclimatic factors were quantified along with wood-inhabiting fungal richness. Generalized linear models were used to characterize relationship between fungal diversity and biotic and abiotic factors.Main results: 374 taxa were identified, with numerous species found to cohabitate, the highest sharing being between Fine Woody Debris and Downed Coarse Woody Debris. The best predictors of total diversity were related to the substrate, management, stand structure, and macroclimate. Higher volumes of logs and large branches in various decay stages increased fungal richness. The same effect was found in diverse forests, with large snags. Macroclimate and topoclimate positively influenced diversity, through De Martonne Aridity Index and snow cover length, both indicating macrofungi preferences for higher moisture of substrate. Silvicultural interventions had an ambivalent effect to fungal diversity, phenomenon observed through stump numbers and proportion.Research highlights: Particular environmental characteristics proved significantly important in explaining different wood-inhabiting fungal richness patterns. Substrate-related variables were the most common ones found, but they were closely linked to climate and forest stand variables.Keywords: Wood-inhabiting fungi; oak, beech and coniferous forests; substrate diversity; dead wood types; coarse woody debris; fine woody debris; climatic variables.Abbreviations used:ALT, elevation; ASPI, Aspect Index; BIO1, mean annual temperature; BIO4, temperature seasonality; BIO7, annual temperature range; BIO12, annual precipitation; BIO15, precipitation seasonality; CWD, coarse woody debris; DBH, diameter at breast height; DCWD, downed coarse woody debris; DCWD_DECAY, DCWD decay diversity; DCWD_DIV, DCWD taxonomic diversity; DCWD_SV, surface-volume ratio of DCWD; DCWD_VOL, DCWD volume; DMAI, De Martonne Aridity Index; DMAI_AU, Autumn DMAI; DMAI_SP, Spring DMAI; DMAI_SU, Summer DMAI; DMAI_WI, Winter DMAI; FAI, Forestry Aridity Index; FWD, fine woody debris; L_SNAG_BA, large snag basal area; OLD_BA, basal area of old trees; POI, Positive Openness Index; RAI, Recent Activity Index; SCL, snow cover length; SLOPE, slope; SNAG_N, snag density; STUMP_N, stump density; TPI, Topographic Position Index; TREE_BA, mean basal area of trees; TREE_DIV, tree' Shannon diversity.


2016 ◽  
Vol 12 (9) ◽  
pp. 69
Author(s):  
Carlos Belezaca Pinargote ◽  
Darwin Salvatierra Piloso ◽  
Diana Delgado Campusano ◽  
Roberto Godoy Bórquez ◽  
Eduardo Valenzuela Flores ◽  
...  

Coarse woody debris (CWD) are the necromass in wooded environments and comply with various ecosystems functions, such as seedling nursery, habitat other organisms, store carbon (C) and nutrients, etc.. Volume, necromass, and decay states of CWD dead in an old-growth temperate (OGTF) forest in Puyehue National Park, South-Central Chile were evaluated. In 10 plots of 900 m2 CWD was quantified (≥ 10 cm diameter), whose necromass classified using a scale of five categories/stages of decay, necromass (1 = lowest and 5 = highest degradation). The average forest density was 299 trees ha-1, 112 m2 ha-1 of basal area, and 2.395 m3 of stem volume. The upper arboreal stratum was dominated by N. betuloides. The greatest amount of CWD belonged to N. betuloides (95,2%), where logs (52,7%) and branches (35%), plant structures were present in greater numbers. The bulk of necromass found in advanced states of decomposition (level 4 and 5) with 56,5% and 34,1%, respectively. It was determined that the CWD volume was 632 m3 ha-1, representing a necromass of 321.5 Mg ha- 1. These results demonstrate that the old-growth temperate forests of southern Chile are significant reserves of coarse woody debris, which contributes to the biogeochemistry of these complex and remote ecosystems.


2020 ◽  
Vol 50 (9) ◽  
pp. 925-935 ◽  
Author(s):  
Ingrid Farnell ◽  
Ché Elkin ◽  
Erica Lilles ◽  
Anne-Marie Roberts ◽  
Michelle Venter

Coarse woody debris (CWD) in the form of logs, downed wood, stumps and large tree limbs is an important structural habitat feature for many small mammal species, including the American marten (Martes americana). At a long-term experimental trial in northern temperate hemlock-cedar forests of British Columbia, Canada, we analysed the impact of varying amounts of overstory basal area retention: 0% (clearcut), 40%, 70%, and 100% (unharvested) on CWD volume, decay class, and inputs from windthrow over 27 years. We used CWD attributes (diameter, length, decay class, and height above the ground) known to be favourable for martens to create an index for assessing the impact of harvesting intensity on CWD habitat features. Stands with 70% retention had CWD attributes that resulted in CWD habitat features similar to unharvested stands. Clearcuts contained pieces that were smaller, more decayed, and closer to the ground, which contributed to a habitat that was less valuable, compared with stands that had higher retention. Over the 27-year period, windthrown trees were the majority of CWD inputs, and volume change was positively related to percent retention. Our results highlight that forest management influences CWD size and input dynamics over multiple decades, and the need for consideration of these impacts when undertaking long-term multiple-use forestry planning.


Sign in / Sign up

Export Citation Format

Share Document