scholarly journals Discriminant Analysis of the Damage Degree Caused by Pine Shoot Beetle to Yunnan Pine Using UAV-Based Hyperspectral Images

Forests ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1258
Author(s):  
Mengying Liu ◽  
Zhonghe Zhang ◽  
Xuelian Liu ◽  
Jun Yao ◽  
Ting Du ◽  
...  

Due to the increased frequency and intensity of forest damage caused by diseases and pests, effective methods are needed to accurately monitor the damage degree. Unmanned aerial vehicle (UAV)-based hyperspectral imaging is an effective technique for forest health surveying and monitoring. In this study, a framework is proposed for identifying the severity of damage caused by Tomicus spp. (the pine shoot beetle, PSB) to Yunnan pine (Pinus yunnanensis Franch) using UAV-based hyperspectral images. Four sample plots were set up in Shilin, Yunnan Province, China. A total of 80 trees were investigated, and their hyperspectral data were recorded. The spectral data were subjected to a one-way ANOVA. Two sensitive bands and one sensitive parameter were selected using Pearson correlation analysis and stepwise discriminant analysis to establish a diagnostic model of the damage degree. A discriminant rule was established to identify the degree of damage based on the median value between different degrees of damage. The diagnostic model with R690 and R798 as variables had the highest accuracy (R2 = 0.854, RMSE = 0.427), and the test accuracy of the discriminant rule was 87.50%. The results are important for forest damage caused by the PSB.


Pedosphere ◽  
2006 ◽  
Vol 16 (2) ◽  
pp. 154-160 ◽  
Author(s):  
Zhou SHI ◽  
Jie-Liang CHENG ◽  
Ming-Xiang HUANG ◽  
Lian-Qing ZHOU


2020 ◽  
Vol 12 (4) ◽  
pp. 597 ◽  
Author(s):  
Akash Anand ◽  
Prem Chandra Pandey ◽  
George P. Petropoulos ◽  
Andrew Pavlides ◽  
Prashant K. Srivastava ◽  
...  

Mangrove forest coastal ecosystems contain significant amount of carbon stocks and contribute to approximately 15% of the total carbon sequestered in ocean sediments. The present study aims at exploring the ability of Earth Observation EO-1 Hyperion hyperspectral sensor in estimating aboveground carbon stocks in mangrove forests. Bhitarkanika mangrove forest has been used as case study, where field measurements of the biomass and carbon were acquired simultaneously with the satellite data. The spatial distribution of most dominant mangrove species was identified using the Spectral Angle Mapper (SAM) classifier, which was implemented using the spectral profiles extracted from the hyperspectral data. SAM performed well, identifying the total area that each of the major species covers (overall kappa = 0.81). From the hyperspectral images, the NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) were applied to assess the carbon stocks of the various species using machine learning (Linear, Polynomial, Logarithmic, Radial Basis Function (RBF), and Sigmoidal Function) models. NDVI and EVI is generated using covariance matrix based band selection algorithm. All the five machine learning models were tested between the carbon measured in the field sampling and the carbon estimated by the vegetation indices NDVI and EVI was satisfactory (Pearson correlation coefficient, R, of 86.98% for EVI and of 84.1% for NDVI), with the RBF model showing the best results in comparison to other models. As such, the aboveground carbon stocks for species-wise mangrove for the study area was estimated. Our study findings confirm that hyperspectral images such as those from Hyperion can be used to perform species-wise mangrove analysis and assess the carbon stocks with satisfactory accuracy.



2021 ◽  
Author(s):  
Gilles Y. Chodaton ◽  
Eric Etchikinto Agoyi ◽  
Thomas A. Houndété ◽  
Konoutan M. Kafoutchoni ◽  
Hospice S. Sossou ◽  
...  

Abstract Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal & Baudet] (KG) is a nutritious, subterranean grain legume in West and Central Africa. Only limited information is available on the morphological traits that can discriminate accessions; without such information, appropriate breeding strategies cannot be devised. This study aimed to identify discriminating traits and assess the diversity among accessions of Kersting’s groundnut. Eighty-one KG accessions from Benin and Burkina Faso were evaluated based on 29 qualitative and quantitative traits. An experiment was conducted using an Alpha lattice design with three replications. Standardized Shannon-Weaver index (H') and descriptive statistics were calculated for qualitative traits. Pearson correlation coefficients, stepwise discriminant analysis, principal component analysis, cluster analysis and canonical discriminant analysis were conducted. Results showed that accessions varied greatly based on growth habit (H'= 0.68), flower color (H' = 0.50), seed-eye shape (H' = 0.47), and stem pigmentation (H' = 0.41). Eight quantitative traits, viz., seed width, seed thickness, number of branches per plant, petiole length, days to 50% flowering, number of seeds per pod, pod width, and pod length, were found to significantly discriminate the accessions. Accessions were grouped into three clusters based on quantitative traits. Cluster 1 had accessions with late flowering and good vegetative growth, Cluster 2 contained accessions with high germination percentage and Cluster 3 had accessions with high yield performance. Seed length varied greatly among accessions, thus indicating the potential for improving yield via seed size.



2021 ◽  
Vol 13 (2) ◽  
pp. 268
Author(s):  
Xiaochen Lv ◽  
Wenhong Wang ◽  
Hongfu Liu

Hyperspectral unmixing is an important technique for analyzing remote sensing images which aims to obtain a collection of endmembers and their corresponding abundances. In recent years, non-negative matrix factorization (NMF) has received extensive attention due to its good adaptability for mixed data with different degrees. The majority of existing NMF-based unmixing methods are developed by incorporating additional constraints into the standard NMF based on the spectral and spatial information of hyperspectral images. However, they neglect to exploit the nature of imbalanced pixels included in the data, which may cause the pixels mixed with imbalanced endmembers to be ignored, and thus the imbalanced endmembers generally cannot be accurately estimated due to the statistical property of NMF. To exploit the information of imbalanced samples in hyperspectral data during the unmixing procedure, in this paper, a cluster-wise weighted NMF (CW-NMF) method for the unmixing of hyperspectral images with imbalanced data is proposed. Specifically, based on the result of clustering conducted on the hyperspectral image, we construct a weight matrix and introduce it into the model of standard NMF. The proposed weight matrix can provide an appropriate weight value to the reconstruction error between each original pixel and the reconstructed pixel in the unmixing procedure. In this way, the adverse effect of imbalanced samples on the statistical accuracy of NMF is expected to be reduced by assigning larger weight values to the pixels concerning imbalanced endmembers and giving smaller weight values to the pixels mixed by majority endmembers. Besides, we extend the proposed CW-NMF by introducing the sparsity constraints of abundance and graph-based regularization, respectively. The experimental results on both synthetic and real hyperspectral data have been reported, and the effectiveness of our proposed methods has been demonstrated by comparing them with several state-of-the-art methods.



Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2213
Author(s):  
Ahyeong Lee ◽  
Saetbyeol Park ◽  
Jinyoung Yoo ◽  
Jungsook Kang ◽  
Jongguk Lim ◽  
...  

Biofilms formed on the surface of agro-food processing facilities can cause food poisoning by providing an environment in which bacteria can be cultured. Therefore, hygiene management through initial detection is important. This study aimed to assess the feasibility of detecting Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium) on the surface of food processing facilities by using fluorescence hyperspectral imaging. E. coli and S. typhimurium were cultured on high-density polyethylene and stainless steel coupons, which are the main materials used in food processing facilities. We obtained fluorescence hyperspectral images for the range of 420–730 nm by emitting UV light from a 365 nm UV light source. The images were used to perform discriminant analyses (linear discriminant analysis, k-nearest neighbor analysis, and partial-least squares discriminant analysis) to identify and classify coupons on which bacteria could be cultured. The discriminant performances of specificity and sensitivity for E. coli (1–4 log CFU·cm−2) and S. typhimurium (1–6 log CFU·cm−2) were over 90% for most machine learning models used, and the highest performances were generally obtained from the k-nearest neighbor (k-NN) model. The application of the learning model to the hyperspectral image confirmed that the biofilm detection was well performed. This result indicates the possibility of rapidly inspecting biofilms using fluorescence hyperspectral images.



2021 ◽  
Vol 13 (7) ◽  
pp. 1249
Author(s):  
Sungho Kim ◽  
Jungsub Shin ◽  
Sunho Kim

This paper presents a novel method for atmospheric transmittance-temperature-emissivity separation (AT2ES) using online midwave infrared hyperspectral images. Conventionally, temperature and emissivity separation (TES) is a well-known problem in the remote sensing domain. However, previous approaches use the atmospheric correction process before TES using MODTRAN in the long wave infrared band. Simultaneous online atmospheric transmittance-temperature-emissivity separation starts with approximation of the radiative transfer equation in the upper midwave infrared band. The highest atmospheric band is used to estimate surface temperature, assuming high emissive materials. The lowest atmospheric band (CO2 absorption band) is used to estimate air temperature. Through onsite hyperspectral data regression, atmospheric transmittance is obtained from the y-intercept, and emissivity is separated using the observed radiance, the separated object temperature, the air temperature, and atmospheric transmittance. The advantage with the proposed method is from being the first attempt at simultaneous AT2ES and online separation without any prior knowledge and pre-processing. Midwave Fourier transform infrared (FTIR)-based outdoor experimental results validate the feasibility of the proposed AT2ES method.



2021 ◽  
Vol 13 (14) ◽  
pp. 2649
Author(s):  
Hafiz Ali Imran ◽  
Damiano Gianelle ◽  
Michele Scotton ◽  
Duccio Rocchini ◽  
Michele Dalponte ◽  
...  

Plant biodiversity is an important feature of grassland ecosystems, as it is related to the provision of many ecosystem services crucial for the human economy and well-being. Given the importance of grasslands, research has been carried out in recent years on the potential to monitor them with novel remote sensing techniques. In this study, the optical diversity (also called spectral diversity) approach was adopted to check the potential of using high-resolution hyperspectral images to estimate α-diversity in grassland ecosystems. In 2018 and 2019, grassland species composition was surveyed and canopy hyperspectral data were acquired at two grassland sites: Monte Bondone (IT-MBo; species-rich semi-natural grasslands) and an experimental farm of the University of Padova, Legnaro, Padua, Italy (IT-PD; artificially established grassland plots with a species-poor mixture). The relationship between biodiversity (species richness, Shannon’s, species evenness, and Simpson’s indices) and optical diversity metrics (coefficient of variation-CV and standard deviation-SD) was not consistent across the investigated grassland plant communities. Species richness could be estimated by optical diversity metrics with an R = 0.87 at the IT-PD species-poor site. In the more complex and species-rich grasslands at IT-MBo, the estimation of biodiversity indices was more difficult and the optical diversity metrics failed to estimate biodiversity as accurately as in IT-PD probably due to the higher number of species and the strong canopy spatial heterogeneity. Therefore, the results of the study confirmed the ability of spectral proxies to detect grassland α-diversity in man-made grassland ecosystems but highlighted the limitations of the spectral diversity approach to estimate biodiversity when natural grasslands are observed. Nevertheless, at IT-MBo, the optical diversity metric SD calculated from post-processed hyperspectral images and transformed spectra showed, in the red part of the spectrum, a significant correlation (up to R = 0.56, p = 0.004) with biodiversity indices. Spatial resampling highlighted that for the IT-PD sward the optimal optical pixel size was 1 cm, while for the IT-MBo natural grassland it was 1 mm. The random pixel extraction did not improve the performance of the optical diversity metrics at both study sites. Further research is needed to fully understand the links between α-diversity and spectral and biochemical heterogeneity in complex heterogeneous ecosystems, and to assess whether the optical diversity approach can be adopted at the spatial scale to detect β-diversity. Such insights will provide more robust information on the mechanisms linking grassland diversity and optical heterogeneity.





2018 ◽  
Vol 14 (s1) ◽  
pp. 79-88
Author(s):  
Katalin Badak-Kerti ◽  
Szabina Németh ◽  
Andreas Zitek ◽  
Ferenc Firtha

In our research marzipan samples of different sugar to almond paste ratios (1:1, 2:1, 3:1) were stored at 17 °C. Reducing sugar content was measured by analytical method, texture analysis was done by penetrometry, electric characteristics were measured by conductometry and hyperspectral images were taken 6–8 times during the 16 days of storage. For statistical analyses (discriminant analysis, principal component analysis) SPSS program was used. According to our findings with the hyperspectral analysis technique, it is possible to identify how long the samples were stored (after production), and to which class (ratio of sugar to almond) the sample belonged. The main wavelengths which gave the best discrimination results among the days of storage were between 960 and 1100 nm. The type of the marzipan was easy to distinguish with the hyperspectral data; the biggest differences were observed at 1200 and 1400 nm, which are connected to the first overtone of C-H bound, therefore correlate with the oil content. The spatial distribution of penetrometric, electric and spectral properties were also characteristic to fructose content. The fructose content of marzipan is difficult to measure by usual optical ways (polarimetry, spectroscopy), but since fructose is hygroscopic, the spatial distribution of spectral properties can be characteristic.



2021 ◽  
Vol 13 (21) ◽  
pp. 4472
Author(s):  
Tianyu Zhang ◽  
Cuiping Shi ◽  
Diling Liao ◽  
Liguo Wang

Convolutional neural networks (CNNs) have been widely used in hyperspectral image classification in recent years. The training of CNNs relies on a large amount of labeled sample data. However, the number of labeled samples of hyperspectral data is relatively small. Moreover, for hyperspectral images, fully extracting spectral and spatial feature information is the key to achieve high classification performance. To solve the above issues, a deep spectral spatial inverted residuals network (DSSIRNet) is proposed. In this network, a data block random erasing strategy is introduced to alleviate the problem of limited labeled samples by data augmentation of small spatial blocks. In addition, a deep inverted residuals (DIR) module for spectral spatial feature extraction is proposed, which locks the effective features of each layer while avoiding network degradation. Furthermore, a global 3D attention module is proposed, which can realize the fine extraction of spectral and spatial global context information under the condition of the same number of input and output feature maps. Experiments are carried out on four commonly used hyperspectral datasets. A large number of experimental results show that compared with some state-of-the-art classification methods, the proposed method can provide higher classification accuracy for hyperspectral images.



Sign in / Sign up

Export Citation Format

Share Document