scholarly journals Impact of Past and Future Climate Change on the Potential Distribution of an Endangered Montane Shrub Lonicera oblata and Its Conservation Implications

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 125
Author(s):  
Yuan-Mi Wu ◽  
Xue-Li Shen ◽  
Ling Tong ◽  
Feng-Wei Lei ◽  
Xian-Yun Mu ◽  
...  

Climate change is an important driver of biodiversity patterns and species distributions, understanding how organisms respond to climate change will shed light on the conservation of endangered species. In this study, we modeled the distributional dynamics of a critically endangered montane shrub Lonicera oblata in response to climate change under different periods by building a comprehensive habitat suitability model considering the effects of soil and vegetation conditions. Our results indicated that the current suitable habitats for L. oblata are located scarcely in North China. Historical modeling indicated that L. oblata achieved its maximum potential distribution in the last interglacial period which covered southwest China, while its distribution area decreased for almost 50% during the last glacial maximum. It further contracted during the middle Holocene to a distribution resembling the current pattern. Future modeling showed that the suitable habitats of L. oblata contracted dramatically, and populations were fragmentedly distributed in these areas. As a whole, the distribution of L. oblata showed significant migration northward in latitude but no altitudinal shift. Several mountains in North China may provide future stable climatic areas for L. oblata, particularly, the intersections between the Taihang and Yan mountains. Our study strongly suggested that the endangered montane shrub L. oblata are sensitive to climate change, and the results provide new insights into the conservation of it and other endangered species.

2021 ◽  
Author(s):  
Lingliang Guan ◽  
YuXia Yang ◽  
Pan Jiang ◽  
Qiuyu Mou ◽  
Yunsha Gou ◽  
...  

Abstract Blumea balsamifera is a famous Chinese Minority Medicine, which has a long history in Miao, Li, Zhuang and other minority areas. In recent years, due to the influence of natural and human factors, the distribution area of B. balsamifera resources has a decreasing trend. Therefore, it is very important to analyze the suitability of B. balsamifera in China. Following three climate change scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5) under 2050s and 2070s, geographic information technology (GIS) and maximum entropy model (MaxEnt) were used to simulate the ecological suitability of B. balsamifera. The contents of L-borneol and total flavonoids of B. balsamifera in different populations were determined by gas chromatography (GC) and ultraviolet spectrophotometry (UV). The results showed that the key environmental variables affecting the distribution of B. balsamifera were mean temperature of coldest quarter (6.18-26.57 ℃), precipitation of driest quarter (22.46-169.7 mm), annual precipitation (518.36-1845.29 mm) and temperature seasonality (291.31-878.87). Under current climate situation, the highly suitable habitat was mainly located western Guangxi, southern Yunnan, most of Hainan, southwestern Guizhou, southwestern Guangdong, southeastern Fujian and western Taiwan, with a total area of 24.1×104 km2. The areas of the moderately and poorly suitable habitats were 27.57×104 km2 and 42.43×104 km2, respectively. Under the future climate change scenarios, the areas of the highly, moderately, and poorly suitable habitats of B. balsamifera showed a significant increasing trend, the geometric center of the total suitable habitats of B. balsamifera would move to the northeast. In recent years, the planting area of B. balsamifera has been reduced on a large scale in Guizhou, and its ex situ protection is imperative. By comparison, the content of L-borneol, total flavonoids and fresh leaf yield had no significant difference between Guizhou and Hainan (P > 0.05), which indicated that Hainan one of the best choice for ex-situ protection of B. balsamifera.


2020 ◽  
Author(s):  
Alexander Robinson ◽  
Emilie Capron ◽  
Jorge Alvarez-Solas ◽  
Michael Bender ◽  
Heiko Goelzer ◽  
...  

<p>There is still no consensus concerning the evolution of the Greenland ice sheet during the Last Interglacial period (LIG, 130-115 kyr ago). Ice cores indicate that the ice sheet survived over most of the continent. Proxy data indicate temperature anomalies of up to 6-8°C. However, under these conditions, models predict almost complete deglaciation. This paradox must be resolved to be able to quantify Greenland’s sea-level contribution during the LIG as well as to understand its sensitivity to future climate change. Here we analyze the available evidence and outline strategies to reconcile modeling and data efforts for Greenland during the LIG.</p>


Author(s):  
Diana Hernandez Langford ◽  
Jaime Escoto Moreno ◽  
Joaquín Sosa Ramírez

Aim: Mexican hand tree Chiranthodendron pentadactylon is an evergreen temperate tree species restricted to cloud forests and pine-oak forests of southern Mexico, Guatemala and possibly Honduras. Climate is believed to significantly contribute to the species establishment, viability and distribution. Insights into the impact of climate change on the species potential distribution throughout time were approached by ecological niche modeling tools. Location: Southern Mexico, Guatemala and Honduras. Methods: Past (Last Interglacial 120-140 KA, Last Glacial Maximum 22 KA, Mid-Holocene 6 KA), historical (1910-2009) and future (2021-2040, 2041-2060, 2061-2080 and 2081-2100) potential distributions and corresponding environmental suitability were modelled using the Maximum Entropy algorithm. Current (historical) models were based on the most up to date historical environmental variables and constituted the baseline for past and future projections. Past predictions are revisited in a phylogeographic context. Future predictions were made for four different emissions scenarios. Results: Increase in potential distribution range comes about during cold and humid periods but higher suitability possibly relates to humid conditions. Potential distribution alongside environmental suitability diminishes during warm and dry periods. Future climate change implies warmer periods whence environmental suitability declines following a linear trend. Main conclusions: Future warmer conditions are predicted to linearly reduce environmental suitability throughout time. Biotic and anthropogenic factors further threaten the species distribution. Demographic trends and genetic diversity estimated through a recent phylogeographic study, complement the statement that populations viability is increasingly being threatened by current and future climate change, underscoring the need for the implementation of conservation actions.


Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 774
Author(s):  
Runan Zhao ◽  
Xiaojie Chu ◽  
Qianqian He ◽  
Yan Tang ◽  
Min Song ◽  
...  

Future climate change will have serious impacts on species survival and distribution and will likely lead to the extinction of some species classified as endangered. Carpinus tientaiensis (Betulaceae), a unique and endangered species in China, has restricted distribution and a small population, indicating an urgent need for its protection. However, research on its current distribution or the influence that climate change will have on its future survival and distribution is limited. We used a MaxEnt model and ArcGIS software to predict the current and future niches of C. tientaiensis. The current suitable distribution area of C. tientaiensis is small, mainly in east China, south Zhejiang and Anhui, and central and southern mountainous areas of Taiwan province. The core suitable areas are concentrated in the Xianxialing and Kuocang mountains in south Zhejiang, the southern mountains of Taiwan, and the Dabie, Huangshan and Jiuhua mountains in south Anhui. Among the 15 BIOCLIM variables examined, the precipitation of the driest quarter (bio17) was found to be the most important factor limiting C. tientaiensis survival and distribution. Future field investigations will focus on the Xianxialing and Kuocang mountains, as they may have unidentified wild C. tientaiensis communities. In the future, the Kuocang, Dapan and Tiantai mountains in east Zhejiang, and the high-altitude areas of Dabie and Jiuhua mountains in south Anhui, will be suitable for C. tientaiensis ex situ conservation and cultivation. However, the suitable distribution and core suitable areas for C. tientaiensis will decrease sharply as they are susceptible to climate shocks. Moreover, the suitable distribution area of C. tientaiensis is predicted to move slightly north and obviously eastward. Therefore, we suggest that strengthen conservation and management efforts for C. tientaiensis in its original habitats, and actively carry out ex situ conservation and artificial breeding in botanical gardens.


2021 ◽  
Vol 43 ◽  
pp. 147-166
Author(s):  
Rubén Ramírez-Rodríguez ◽  
Manuel Melendo-Luque ◽  
Juan Diego Rus-Moreno ◽  
Francisco Amich

A particular threat posed by climate change for biodiversity conservation, one which has scarcely been studied, is the overlap of the potential distribution areas in phylogenetically closely related species. In this study, Species Distribution Modelling (SDM) was used to investigate the potential changes in the distribution of Delphinium bolosii and D. fissum subsp. sordidum under future climatic scenarios. These two closely related and endangered endemic species from the Iberian Peninsula do not have complete reproductive barriers between them. The two models selected different predictors with a similar effect in the biological cycle. Both taxa need low winter temperatures to break seed dormancy and sufficient rainfall to complete the flowering and fruiting stages. The current potential distribution areas of both taxa do not currently overlap. However, the results showed that potential changes may take place in the species’ distribution range under future climate scenarios. The models predict a reduction of the potential distribution area of D. bolosii while, conversely, the potential distribution area of D. fissum subsp. sordidum increased. In both cases, the predicted contraction in range is very high, and loss of habitat suitability in some current localities is worrying. Notwithstanding, the models do not predict overlaps of potential areas under climate change scenarios. Our findings can be used to define areas and populations of high priority for conservation or to take action against the impacts of climate change on these endangered species.


2006 ◽  
Vol 2 (2) ◽  
pp. 145-165 ◽  
Author(s):  
V. Masson-Delmotte ◽  
G. Dreyfus ◽  
P. Braconnot ◽  
S. Johnsen ◽  
J. Jouzel ◽  
...  

Abstract. Ice cores provide unique archives of past climate and environmental changes based only on physical processes. Quantitative temperature reconstructions are essential for the comparison between ice core records and climate models. We give an overview of the methods that have been developed to reconstruct past local temperatures from deep ice cores and highlight several points that are relevant for future climate change. We first analyse the long term fluctuations of temperature as depicted in the long Antarctic record from EPICA Dome C. The long term imprint of obliquity changes in the EPICA Dome C record is highlighted and compared to simulations conducted with the ECBILT-CLIO intermediate complexity climate model. We discuss the comparison between the current interglacial period and the long interglacial corresponding to marine isotopic stage 11, ~400 kyr BP. Previous studies had focused on the role of precession and the thresholds required to induce glacial inceptions. We suggest that, due to the low eccentricity configuration of MIS 11 and the Holocene, the effect of precession on the incoming solar radiation is damped and that changes in obliquity must be taken into account. The EPICA Dome C alignment of terminations I and VI published in 2004 corresponds to a phasing of the obliquity signals. A conjunction of low obliquity and minimum northern hemisphere summer insolation is not found in the next tens of thousand years, supporting the idea of an unusually long interglacial ahead. As a second point relevant for future climate change, we discuss the magnitude and rate of change of past temperatures reconstructed from Greenland (NorthGRIP) and Antarctic (Dome C) ice cores. Past episodes of temperatures above the present-day values by up to 5°C are recorded at both locations during the penultimate interglacial period. The rate of polar warming simulated by coupled climate models forced by a CO2 increase of 1% per year is compared to ice-core-based temperature reconstructions. In Antarctica, the CO2-induced warming lies clearly beyond the natural rhythm of temperature fluctuations. In Greenland, the CO2-induced warming is as fast or faster than the most rapid temperature shifts of the last ice age. The magnitude of polar temperature change in response to a quadrupling of atmospheric CO2 is comparable to the magnitude of the polar temperature change from the Last Glacial Maximum to present-day. When forced by prescribed changes in ice sheet reconstructions and CO2 changes, climate models systematically underestimate the glacial-interglacial polar temperature change.


2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


2020 ◽  
Vol 14 (3) ◽  
pp. 401-414 ◽  
Author(s):  
Jianzhao Tang ◽  
Dengpan Xiao ◽  
Huizi Bai ◽  
Bin Wang ◽  
De Li Liu ◽  
...  

2020 ◽  
Vol 12 (4) ◽  
pp. 1491
Author(s):  
Xuhui Zhang ◽  
Haiyan Wei ◽  
Zefang Zhao ◽  
Jing Liu ◽  
Quanzhong Zhang ◽  
...  

The potential distribution of the invasive plant Anredera cordifolia (Tenore) Steenis was predicted by Random Forest models under current and future climate-change pathways (i.e., RCP4.5 and RCP8.5 of 2050s and the 2070s). Pearson correlations were used to select variables; the prediction accuracy of the models was evaluated by using AUC, Kappa, and TSS. The results show that suitable future distribution areas are mainly in Southeast Asia, Eastern Oceania, a few parts of Eastern Africa, Southern North America, and Eastern South America. Temperature is the key climatic factor affecting the distribution of A. cordifolia. Important metrics include mean temperature of the coldest quarter (0.3 °C ≤ Bio11 ≤ 22.9 °C), max temperature of the warmest month (17.1 °C ≤ Bio5 ≤ 35.5 °C), temperature annual range (10.7 °C ≤ Bio7 ≤ 33 °C), annual mean air temperature (6.8 °C ≤ Bio1 ≤ 24.4 °C), and min temperature of coldest month (−2.8 °C ≤ Bio6 ≤ 17.2 °C). Only one precipitation index (Bio19) was important, precipitation of coldest quarter (7 mm ≤ Bio19 ≤ 631 mm). In addition, areas with strong human activities are most prone to invasion. This species is native to Brazil, but has been introduced in Asia, where it is widely planted and has escaped from cultivation. Under the future climate scenarios, suitable habitat areas of A. cordifolia will expand to higher latitudes. This study can provide a reference for the rational management and control of A. cordifolia.


Sign in / Sign up

Export Citation Format

Share Document