scholarly journals Potential changes in the distribution of Delphinium bolosii and related taxa of the series Fissa from the Iberian Peninsula under future climate change scenarios

2021 ◽  
Vol 43 ◽  
pp. 147-166
Author(s):  
Rubén Ramírez-Rodríguez ◽  
Manuel Melendo-Luque ◽  
Juan Diego Rus-Moreno ◽  
Francisco Amich

A particular threat posed by climate change for biodiversity conservation, one which has scarcely been studied, is the overlap of the potential distribution areas in phylogenetically closely related species. In this study, Species Distribution Modelling (SDM) was used to investigate the potential changes in the distribution of Delphinium bolosii and D. fissum subsp. sordidum under future climatic scenarios. These two closely related and endangered endemic species from the Iberian Peninsula do not have complete reproductive barriers between them. The two models selected different predictors with a similar effect in the biological cycle. Both taxa need low winter temperatures to break seed dormancy and sufficient rainfall to complete the flowering and fruiting stages. The current potential distribution areas of both taxa do not currently overlap. However, the results showed that potential changes may take place in the species’ distribution range under future climate scenarios. The models predict a reduction of the potential distribution area of D. bolosii while, conversely, the potential distribution area of D. fissum subsp. sordidum increased. In both cases, the predicted contraction in range is very high, and loss of habitat suitability in some current localities is worrying. Notwithstanding, the models do not predict overlaps of potential areas under climate change scenarios. Our findings can be used to define areas and populations of high priority for conservation or to take action against the impacts of climate change on these endangered species.

2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


2019 ◽  
Vol 66 (2) ◽  
pp. 178-190 ◽  
Author(s):  
E Silvério ◽  
J Duque-Lazo ◽  
R M Navarro-Cerrillo ◽  
F Pereña ◽  
G Palacios-Rodríguez

Abstract It is predicted that changes in climate will lead to episodes of large forest decline and mortality. Therefore, the distributions of forest plantations and natural stands might already be facing such impacts. We selected the most arid zone of south-eastern Europe (eastern Andalusia) to assess how the distributions of Pinus halepensis Miller. and Pinus pinaster Aiton forest plantations and natural stands cope with climate change and to determine whether natural or planted distributions would be more stable under future climate-change scenarios. We used presence-point locations from natural distributions, obtained from the third Spanish National Forest Inventory, to develop ensemble species distribution models. The forecast predicted a slight increase in the potential distribution of both species by 2040, with a subsequent drastic decrease until 2099. Pinus halepensis had larger current and future potential distributions than P. pinaster but a slightly greater decrease with time in the potential distribution than that of P. pinaster. On the other hand, the natural and planted distributions of P. halepensis were more vulnerable to future climate change scenarios than those of P. pinaster. Natural populations will likely be more resilient to climate change than planted populations.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 229
Author(s):  
Cheol Min Lee ◽  
Dae-Seong Lee ◽  
Tae-Sung Kwon ◽  
Mohammad Athar ◽  
Young-Seuk Park

The tropical fire ant Solenopsis geminata (Hymenoptera: Formicidae) is a serious invasive species that causes a decline in agricultural production, damages infrastructure, and harms human health. This study was aimed to develop a model using the maximum entropy (MaxEnt) algorithm to predict the current and future distribution of S. geminata on a global scale for effective monitoring and management. In total, 669 occurrence sites of S. geminata and six bioclimatic variables of current and future climate change scenarios for 2050 and 2100 were used for the modeling. The annual mean temperature, annual precipitation, and precipitation in the driest quarter were the key influential factors for determining the distribution of S. geminata. Although the potential global distribution area of S. geminata is predicted to decrease slightly under global warming, the distribution of favorable habitats is predicted to expand to high latitudes under climate scenarios. In addition, some countries in America and East Asia, such as Brazil, China, South Korea, the USA, and Uruguay, are predicted to be threatened by S. geminata invasion under future climate change. These findings can facilitate the proactive management of S. geminata through monitoring, surveillance, and quarantine measures.


2021 ◽  
Vol 48 (No. 1) ◽  
pp. 38-46
Author(s):  
Ángel M. Felicísimo ◽  
Ignacio Armendáriz ◽  
Virginia Alberdi Nieves

Xylotrechus arvicola is an emerging grape pest that generates serious sanitary problems in vineyards and is currently expanding its range throughout Spain. The increasing prevalence of this pest in Spanish vineyards has been detected since 1990. In this study, the relationship between the climate and the actual distribution of the beetle was analysed, as well as how this distribution might change in the future according to several climate change models. The methodology was based on predictive models (SDM; species distribution modelling) using climate variables as explanatory factors, although the relationships were not necessarily causal. Maxent was used as the SDM method. The current climatic niche was calculated, and the actual potential distribution area was estimated. The relationships between the climate variables and the species probability of the presence were projected to various future climate change scenarios. The main conclusions reached were that climate change will favour the expansion of X. arvicola and that the potential infestation zones will be extended significantly. Although the results, because they were based on hypothetical climate frameworks that are under constant revision, were not conclusive, they should be taken into consideration when defining future strategies in the wine industry.


2021 ◽  
Vol 25 ◽  
pp. 194008292110308
Author(s):  
Antonio Acini Vásquez-Aguilar ◽  
Juan Francisco Ornelas ◽  
Flor Rodríguez-Gómez ◽  
M. Cristina MacSwiney G.

Global climate change is associated with changes in precipitation patterns and an increase in extreme weather events, which might shift the geographic distribution of species. Despite the importance of this topic, information is lacking for many species, particularly tropical birds. Here, we developed species distribution models (SDMs) to evaluate future projections of the distribution of the widespread Buff-bellied Hummingbird ( Amazilia yucatanensis) and for each of the recognized subspecies ( A. y. yucatanensis, A. y. cerviniventris, A. y. chalconota), under climate change scenarios. Using SDMs we evaluate current and future projections of their potential distribution for four Representative Concentration Pathway (RCPs) for the years 2050 and 2070. We also calculated the subspecies climatic niche breadth to test the relationship between their area of distribution and climatic niche breadth and their niche overlap. Future climate-change models suggested a small increase in the potential distribution of the species and the subspecies A. y. yucatanensis, but the predicted potential geographic range decreased in A. y. chalconota and remained unaffected in A. y. cerviniventris. The climatic niche of A. y. cerviniventris contained part niche space of A. y. yucatanensis and part of A. y. chalconota, but the climatic niches of A. y. yucatanensis and A. y. chalconota did not overlap. Our study highlights the importance of correctly choosing the taxonomic unit to be analyzed because subspecies will respond in a different manner to future climate change; therefore, conservation actions must consider intrinsic requirements of subspecies and the environmental drivers that shape their distributions.


Author(s):  
Diana Hernandez Langford ◽  
Jaime Escoto Moreno ◽  
Joaquín Sosa Ramírez

Aim: Mexican hand tree Chiranthodendron pentadactylon is an evergreen temperate tree species restricted to cloud forests and pine-oak forests of southern Mexico, Guatemala and possibly Honduras. Climate is believed to significantly contribute to the species establishment, viability and distribution. Insights into the impact of climate change on the species potential distribution throughout time were approached by ecological niche modeling tools. Location: Southern Mexico, Guatemala and Honduras. Methods: Past (Last Interglacial 120-140 KA, Last Glacial Maximum 22 KA, Mid-Holocene 6 KA), historical (1910-2009) and future (2021-2040, 2041-2060, 2061-2080 and 2081-2100) potential distributions and corresponding environmental suitability were modelled using the Maximum Entropy algorithm. Current (historical) models were based on the most up to date historical environmental variables and constituted the baseline for past and future projections. Past predictions are revisited in a phylogeographic context. Future predictions were made for four different emissions scenarios. Results: Increase in potential distribution range comes about during cold and humid periods but higher suitability possibly relates to humid conditions. Potential distribution alongside environmental suitability diminishes during warm and dry periods. Future climate change implies warmer periods whence environmental suitability declines following a linear trend. Main conclusions: Future warmer conditions are predicted to linearly reduce environmental suitability throughout time. Biotic and anthropogenic factors further threaten the species distribution. Demographic trends and genetic diversity estimated through a recent phylogeographic study, complement the statement that populations viability is increasingly being threatened by current and future climate change, underscoring the need for the implementation of conservation actions.


2018 ◽  
Vol 38 (24) ◽  
Author(s):  
谭雪 TAN Xue ◽  
张林 ZHANG Lin ◽  
张爱平 ZHANG Aiping ◽  
王毅 WANG Yi ◽  
黄丹 HUANG Dan ◽  
...  

Author(s):  
Changjun Gu ◽  
Tu Yanli ◽  
Linshan Liu ◽  
Wei Bo ◽  
Yili Zhang ◽  
...  

Aim: Invasive alien species (IAS) threaten ecosystems and humans worldwide, and future climate change may accelerate the expansion of IAS. Predicting the suitable distributions of IAS can prevent their further expansion. Ageratina adenophora is a invasive weed over 30 countries in tropical and subtropical regions. However, the potential suitable distribution of A. adenophora remains unclear along with its response to climate change. This study explored and mapped the current and future potential distributions of Ageratina adenophora. Location: Global Taxa: Asteraceae A. adenophora (Spreng.) R.M.King & H.Rob. Commonly known as Crofton weed. Methods: Based on A. adenophora occurrence data and climate data, we predicted its potential distribution of this weed under current and future (four RCPs in 2050 and 2070) by MaxEnt model. We used ArcGIS 10.4 to explore the distribution characteristics of this weed and the ‘ecospat’ package in R to analyse its altitudinal distribution changes. Results: The area under the curve value (>0.9) indicated excelled model performance. Among environment factors, Mean Temperature of Coldest Quarter contributed most to the model. Globally, the suitable habitat for A.adenophora invasion decreased under climate change scenarios, although regional increase were observed, including in six biodiversity hotspot regions. The potential suitable habitat of A.adenophora under climate change moved toward regions with higher elevation. Main Conclusions: Temperature was the most important variable influencing the distribution of A. Adenophora. Under the background of warming climate, the potential distribution range of A.adenophora will shrink globally but increase regionally. The distribution of A.adenophora will shift toward higher elevation under climate change. Mountain ecosystems are of special concern as they are rich in biodiversity and sensitive to climate change, and increasing human activities provide more opportunities for IAS invasion.


PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0182837 ◽  
Author(s):  
Akiko Hirata ◽  
Katsunori Nakamura ◽  
Katsuhiro Nakao ◽  
Yuji Kominami ◽  
Nobuyuki Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document