scholarly journals Potential Distribution of Blumea Balsamifera in China Using MaxEnt and The Ex-Situ Conservation Based on its Effective Components and Fresh Leaf Yield

Author(s):  
Lingliang Guan ◽  
YuXia Yang ◽  
Pan Jiang ◽  
Qiuyu Mou ◽  
Yunsha Gou ◽  
...  

Abstract Blumea balsamifera is a famous Chinese Minority Medicine, which has a long history in Miao, Li, Zhuang and other minority areas. In recent years, due to the influence of natural and human factors, the distribution area of B. balsamifera resources has a decreasing trend. Therefore, it is very important to analyze the suitability of B. balsamifera in China. Following three climate change scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5) under 2050s and 2070s, geographic information technology (GIS) and maximum entropy model (MaxEnt) were used to simulate the ecological suitability of B. balsamifera. The contents of L-borneol and total flavonoids of B. balsamifera in different populations were determined by gas chromatography (GC) and ultraviolet spectrophotometry (UV). The results showed that the key environmental variables affecting the distribution of B. balsamifera were mean temperature of coldest quarter (6.18-26.57 ℃), precipitation of driest quarter (22.46-169.7 mm), annual precipitation (518.36-1845.29 mm) and temperature seasonality (291.31-878.87). Under current climate situation, the highly suitable habitat was mainly located western Guangxi, southern Yunnan, most of Hainan, southwestern Guizhou, southwestern Guangdong, southeastern Fujian and western Taiwan, with a total area of 24.1×104 km2. The areas of the moderately and poorly suitable habitats were 27.57×104 km2 and 42.43×104 km2, respectively. Under the future climate change scenarios, the areas of the highly, moderately, and poorly suitable habitats of B. balsamifera showed a significant increasing trend, the geometric center of the total suitable habitats of B. balsamifera would move to the northeast. In recent years, the planting area of B. balsamifera has been reduced on a large scale in Guizhou, and its ex situ protection is imperative. By comparison, the content of L-borneol, total flavonoids and fresh leaf yield had no significant difference between Guizhou and Hainan (P > 0.05), which indicated that Hainan one of the best choice for ex-situ protection of B. balsamifera.

Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 684
Author(s):  
Yang Liu ◽  
Juan Shi

Climate change is predicted to alter the geographic distribution of a wide variety of taxa, including insects. Icerya aegyptiaca (Douglas) and I. purchasi Maskell are two polyphagous and invasive pests in the genus Icerya Signoret (Hemiptera: Monophlebidae) and cause serious damage to many landscape and economic trees. However, the global habitats suitable for these two Icerya species are unclear. The purpose of this study is to determine the potentially suitable habitats of these two species, then to provide scientific management strategies. Using MaxEnt software, the potential risk maps of I. aegyptiaca and I. purchasi were created based on their occurrence data under different climatic conditions and topology factors. The results suggested that under current climate conditions, the potentially habitable area of I. aegyptiaca would be much larger than the current distribution and there would be small changes for I. purchasi. In the future climate change scenarios, the suitable habitats of these two insect species will display an increasing trend. Africa, South America and Asia would be more suitable for I. aegyptiaca. South America, Asia and Europe would be more suitable for I. purchasi. Moreover, most of the highly habitat suitability areas of I. aegyptiaca will become concentrated in Southern Asia. The results also suggested that “min temperature of coldest month” was the most important environmental factor affecting the prediction models of these two insects. This research provides a theoretical reference framework for developing policies to manage and control these two invasive pests of the genus Icerya.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 125
Author(s):  
Yuan-Mi Wu ◽  
Xue-Li Shen ◽  
Ling Tong ◽  
Feng-Wei Lei ◽  
Xian-Yun Mu ◽  
...  

Climate change is an important driver of biodiversity patterns and species distributions, understanding how organisms respond to climate change will shed light on the conservation of endangered species. In this study, we modeled the distributional dynamics of a critically endangered montane shrub Lonicera oblata in response to climate change under different periods by building a comprehensive habitat suitability model considering the effects of soil and vegetation conditions. Our results indicated that the current suitable habitats for L. oblata are located scarcely in North China. Historical modeling indicated that L. oblata achieved its maximum potential distribution in the last interglacial period which covered southwest China, while its distribution area decreased for almost 50% during the last glacial maximum. It further contracted during the middle Holocene to a distribution resembling the current pattern. Future modeling showed that the suitable habitats of L. oblata contracted dramatically, and populations were fragmentedly distributed in these areas. As a whole, the distribution of L. oblata showed significant migration northward in latitude but no altitudinal shift. Several mountains in North China may provide future stable climatic areas for L. oblata, particularly, the intersections between the Taihang and Yan mountains. Our study strongly suggested that the endangered montane shrub L. oblata are sensitive to climate change, and the results provide new insights into the conservation of it and other endangered species.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 996
Author(s):  
Lele Lin ◽  
Jian He ◽  
Lei Xie ◽  
Guofa Cui

White pines (Pinus subsect. Strobus) play important roles in forest ecosystems in the Northern Hemisphere. Species of this group are narrowly distributed or endangered in China. In this study, we used a species distribution model (SDM) to project and predict the distribution patterns of the 12 species of Chinese white pine under a variety of paleoclimatic and future climate change scenarios based on 39 high-resolution environmental variables and 1459 distribution records. We also computed the centroid shift, range expansion/contraction, and suitability change of the current distribution area to assess the potential risk to each species in the future. The modeling results revealed that the suitable habitat of each species is consistent with but slightly larger than its actual distribution range and that temperature, precipitation, and UV radiation are important determining factors for the distribution of different white pine species. The results indicate that the Last Glacial Maximum (LGM) greatly affected the current distribution of the Chinese white pine species. Additionally, it was predicted that under the future climate change scenarios, there will be a reduction in the area of habitats suitable for P. armandii, P. morrisonicola, and P. mastersiana. Furthermore, some of the current distribution sites of P. armandii, P. kwangtungensis, P. mastersiana, P. morrisonicola, P. sibirica, and P. wallichiana were predicted to become more unsuitable under these scenarios. These results indicate that some Chinese white pine species, such as P. armandii, P. morrisonicola, and P. mastersiana, may have a very high risk of population shrinkage in the future. Overall, this study provided relevant data for the long-term conservation (both in situ and ex situ) and sustainable management of Chinese white pine species.


2021 ◽  
Vol 13 (2) ◽  
pp. 462
Author(s):  
Muhammad Hadi Saputra ◽  
Han Soo Lee

This study aims to assess the impact of climate change on the distribution of Styrax sumatrana in North Sumatra by applying the maximum entropy (MaxEnt) model with biophysical factors (elevation, slope, aspect, and soil), climatic factors (19 bioclimate data sets for 2050 and 2070), and anthropogenic factors (land use land cover (LULC) changes in 2050 and 2070). The future climate data retrieved and used are the output of four climate models from Coupled Model Intercomparison Project Phase 5 (CMIP5), namely, the CCSM4, CNRM-CM5, MIROC5, and MRI-CGCM3 models, under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios. The MaxEnt modelling results showed the importance of the mean temperature of the coldest quarter and the LULC variables. Styrax sumatrana rely on environmental conditions with air temperatures ranging from 13 to 19 °C. The potentially suitable land types for Styrax sumatrana are shrubs, gardens, and forests. The future predictions show that the suitable habitat for Styrax sumatrana is predicted to decrease to 3.87% in 2050 and to 3.54% in 2070 under the RCP4.5 scenario. Under the RCP8.5 scenario, the suitable area is predicted to decrease to 3.04% in 2050 and to 1.36% in 2070, respectively. The degradation of the suitable area is mainly due to increasing temperature and deforestation in future predictions. The modelling results illustrate that the suitable habitats of Styrax sumatrana are likely to be reduced under future climate change scenarios or lost in 2070 under the RCP8.5 scenario. The potential future extinction of this species should alert authorities to formulate conservation strategies. Results also demonstrated key variables that should be used for formulating ex situ conservation strategies.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 229
Author(s):  
Cheol Min Lee ◽  
Dae-Seong Lee ◽  
Tae-Sung Kwon ◽  
Mohammad Athar ◽  
Young-Seuk Park

The tropical fire ant Solenopsis geminata (Hymenoptera: Formicidae) is a serious invasive species that causes a decline in agricultural production, damages infrastructure, and harms human health. This study was aimed to develop a model using the maximum entropy (MaxEnt) algorithm to predict the current and future distribution of S. geminata on a global scale for effective monitoring and management. In total, 669 occurrence sites of S. geminata and six bioclimatic variables of current and future climate change scenarios for 2050 and 2100 were used for the modeling. The annual mean temperature, annual precipitation, and precipitation in the driest quarter were the key influential factors for determining the distribution of S. geminata. Although the potential global distribution area of S. geminata is predicted to decrease slightly under global warming, the distribution of favorable habitats is predicted to expand to high latitudes under climate scenarios. In addition, some countries in America and East Asia, such as Brazil, China, South Korea, the USA, and Uruguay, are predicted to be threatened by S. geminata invasion under future climate change. These findings can facilitate the proactive management of S. geminata through monitoring, surveillance, and quarantine measures.


Author(s):  
Ren-Yan Duan ◽  
Xiao-Quan Kong ◽  
Min-Yi Huang ◽  
Sara Varela ◽  
Xiang Ji

Many studies predict that climate change will cause species movement and turnover, but few studies have considered the effect of climate change on range fragmentation for current species and/or populations. We used MaxEnt to predict suitable habitat, fragmentation and turnover for 134 amphibian species in China under 40 future climate change scenarios spanning four pathways (RCP2.6, RCP4.5, RCP6 and RCP8.5) and two time periods (the 2050s and 2070s). Our results show that climate change will cause a major shift in the spatial patterns of amphibian diversity. Suitable habitats for over 90% of species will be located in the north of the current range, for over 95% of species in higher altitudes, and for over 75% of species in the west of the current range. The distributions of species predicted to move westwards, southwards and to higher altitudes will contract, while the ranges of the species not showing these trends will expand. Amphibians will lose 20% of their original ranges on average; the distribution outside current ranges will increase by 15%. Climate change will likely modify the spatial configuration of climatically suitable areas. Changes in area and fragmentation of climatically suitable patches are related, which means that species may be simultaneously affected by different stressors as a consequence of climate change.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2185 ◽  
Author(s):  
Ren-Yan Duan ◽  
Xiao-Quan Kong ◽  
Min-Yi Huang ◽  
Sara Varela ◽  
Xiang Ji

Many studies predict that climate change will cause species movement and turnover, but few have considered the effect of climate change on range fragmentation for current species and/or populations. We used MaxEnt to predict suitable habitat, fragmentation and turnover for 134 amphibian species in China under 40 future climate change scenarios spanning four pathways (RCP2.6, RCP4.5, RCP6 and RCP8.5) and two time periods (the 2050s and 2070s). Our results show that climate change may cause a major shift in spatial patterns of amphibian diversity. Amphibians in China would lose 20% of their original ranges on average; the distribution outside current ranges would increase by 15%. Suitable habitats for over 90% of species will be located in the north of their current range, for over 95% of species in higher altitudes (from currently 137–4,124 m to 286–4,396 m in the 2050s or 314–4,448 m in the 2070s), and for over 75% of species in the west of their current range. Also, our results predict two different general responses to the climate change: some species contract their ranges while moving westwards, southwards and to higher altitudes, while others expand their ranges. Finally, our analyses indicate that range dynamics and fragmentation are related, which means that the effects of climate change on Chinese amphibians might be two-folded.


2021 ◽  
Vol 48 (No. 1) ◽  
pp. 38-46
Author(s):  
Ángel M. Felicísimo ◽  
Ignacio Armendáriz ◽  
Virginia Alberdi Nieves

Xylotrechus arvicola is an emerging grape pest that generates serious sanitary problems in vineyards and is currently expanding its range throughout Spain. The increasing prevalence of this pest in Spanish vineyards has been detected since 1990. In this study, the relationship between the climate and the actual distribution of the beetle was analysed, as well as how this distribution might change in the future according to several climate change models. The methodology was based on predictive models (SDM; species distribution modelling) using climate variables as explanatory factors, although the relationships were not necessarily causal. Maxent was used as the SDM method. The current climatic niche was calculated, and the actual potential distribution area was estimated. The relationships between the climate variables and the species probability of the presence were projected to various future climate change scenarios. The main conclusions reached were that climate change will favour the expansion of X. arvicola and that the potential infestation zones will be extended significantly. Although the results, because they were based on hypothetical climate frameworks that are under constant revision, were not conclusive, they should be taken into consideration when defining future strategies in the wine industry.


2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Pradeep Adhikari ◽  
Ja-Young Jeon ◽  
Hyun Woo Kim ◽  
Man-Seok Shin ◽  
Prabhat Adhikari ◽  
...  

Abstract Background Invasive plant species are considered a major threat to biodiversity, ecosystem functioning, and human wellbeing worldwide. Climatically suitable ranges for invasive plant species are expected to expand due to future climate change. The identification of current invasions and potential range expansion of invasive plant species is required to plan for the management of these species. Here, we predicted climatically suitable habitats for 11 invasive plant species and calculated the potential species richness and their range expansions in different provinces of the Republic of Korea (ROK) under current and future climate change scenarios (RCP 4.5 and RCP 8.5) using the maximum entropy (MaxEnt) modeling approach. Results Based on the model predictions, areas of climatically suitable habitats for 90.9% of the invasive plant species are expected to retain current ecological niches and expand to include additional climatically suitable areas under future climate change scenarios. Species richness is predicted to be relatively high in the provinces of the western and southern regions (e.g., Jeollanam, Jeollabuk, and Chungcheongnam) under current climatic conditions. However, under future climates, richness in the provinces of the northern, eastern, and southeastern regions (e.g., Seoul, Incheon, Gyeonggi, Gyeongsangnam, Degue, Busan, and Ulsan) is estimated to increase up to 292%, 390.75%, and 468.06% by 2030, 2050, and 2080, respectively, compared with the current richness. Conclusions Our study revealed that the rates of introduction and dispersion of invasive plant species from the western and southern coasts are relatively high and are expanding across the ROK through different modes of dispersion. The negative impacts on biodiversity, ecosystem dynamics, and economy caused by invasive plant species will be high if preventive and eradication measures are not employed immediately. Thus, this study will be helpful to policymakers for the management of invasive plant species and the conservation of biodiversity.


Author(s):  
Ren-Yan Duan ◽  
Xiao-Quan Kong ◽  
Min-Yi Huang ◽  
Sara Varela ◽  
Xiang Ji

Many studies predict that climate change will cause species movement and turnover, but few studies have considered the effect of climate change on range fragmentation for current species and/or populations. We used MaxEnt to predict suitable habitat, fragmentation and turnover for 134 amphibian species in China under 40 future climate change scenarios spanning four pathways (RCP2.6, RCP4.5, RCP6 and RCP8.5) and two time periods (the 2050s and 2070s). Our results show that climate change will cause a major shift in the spatial patterns of amphibian diversity. Suitable habitats for over 90% of species will be located in the north of the current range, for over 95% of species in higher altitudes, and for over 75% of species in the west of the current range. The distributions of species predicted to move westwards, southwards and to higher altitudes will contract, while the ranges of the species not showing these trends will expand. Amphibians will lose 20% of their original ranges on average; the distribution outside current ranges will increase by 15%. Climate change will likely modify the spatial configuration of climatically suitable areas. Changes in area and fragmentation of climatically suitable patches are related, which means that species may be simultaneously affected by different stressors as a consequence of climate change.


Sign in / Sign up

Export Citation Format

Share Document