scholarly journals Aboveground Biomass and Carbon Accumulation 19 Years Post-Windthrow and Salvage Logging

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 173
Author(s):  
Callie Oldfield ◽  
Chris Peterson

Natural disturbances shape forest ecosystem characteristics, including carbon storage and structure. Often, natural disturbances are compounded with anthropogenic disturbances, which may alter the trajectory of forest carbon stock recovery. Heterogeneous levels of disturbance severity in compound disturbance events add an additional layer of complexity. This paper examines the effect of a moderate-severity wind disturbance and subsequent salvage logging on forest biomass and carbon stock recovery over 19 years. We investigate the recovery of aboveground tree biomass following a wind disturbance and salvage logging and examine the role of wind disturbance severity on biomass accumulation rates. We use pre-disturbance, 3 years post-wind disturbance and 19 years post-wind disturbance measurements of tree biomass across two adjacent sites at Natchez Trace State Forest for Site A and Site B in east central Tennessee. We found no significant difference in the carbon storage at Site A (pre = 92 MgC/ha; 19 years post-disturbance = 83 MgC/ha) or Site B (pre = 66 MgC/ha; 19 years post-disturbance = 67) when comparing the pre-disturbance level of aboveground tree carbon storage with the 19-years post-disturbance levels. Furthermore, we found no evidence that salvage logging reduced the rate of live tree carbon accumulation. The corresponding rates of mean annual carbon accumulation (MgC/ha) are as follows: Site A Unsalvaged (1.07), Site A Salvaged (1.25) and Site B Salvaged (2.02). Contrary to our prediction, greater wind damage severity was weakly associated with higher rates of biomass accumulation (R2 = 0.17). While we found no negative effect of salvage logging on the aboveground tree carbon accumulation rate, salvage logging alters other carbon pools, including coarse woody debris. Salvage logging did not reduce the rate of carbon stock recovery, and a higher wind disturbance severity was associated with a greater rate of carbon stock recovery.

2021 ◽  
Vol 4 ◽  
Author(s):  
Winnifred Jean Roach ◽  
Suzanne W. Simard ◽  
Camille E. Defrenne ◽  
Brian J. Pickles ◽  
Les M. Lavkulich ◽  
...  

Forests are important for biodiversity, timber production and carbon accumulation, but these ecosystem services may be impacted by climate change. Field data collected from individual forest types occurring across a climatic gradient can contribute to forecasting these consequences. We examined how changes in temperature, precipitation and aridity affect ecosystem services in 23 mature Douglas-fir (Pseudotsuga menziesii) forests in nine climatic regions across a 900 km gradient in British Columbia, Canada. Using Canadian National Forest Inventory methodology, we assessed richness and diversity of plant functional groups, site index, and above- and below-ground carbon stocks. As aridity increased, ecosystem-level tree species richness declined on average from four to one species, Douglas-fir site index declined from 30 to 15 m, and ecosystem carbon storage decreased from 565 to 222 Mg ha–1. Tree species richness was positively and herb species richness negatively correlated with carbon storage. Carbon storage by ecosystem compartment was largest in aboveground live tree biomass, declining in the following order: mineral soils > coarse woody debris and dead standing trees > forest floor > small and fine woody debris > understory plants. Mineral soil carbon at depths of 0-15 cm, 15-35 cm, and 35-55 cm increased with increasing mean annual precipitation and decreasing aridity. Our results indicate that as aridity increases and precipitation decreases, tree species richness, site index and carbon storage in existing Douglas-fir forests declines. However, assisted or natural migration of Douglas-fir into more humid regions could be associated with more diverse, productive, carbon-rich forests. This study informs carbon stock vulnerability and provides empirical data essential for carbon stock forecasts.


2021 ◽  
Vol 42 (3) ◽  
pp. 687-693
Author(s):  
S. Alom ◽  
◽  
R. Das ◽  
U. Baruah ◽  
S. Das ◽  
...  

Aim: To study the carbon sequestration process in tea based plantation system and to identify more potential carbon sequestration system amongst the tea based cropping system by studying carbon storage in different components of the plantation system. Methodology: The experiment was carried out in the Experimental Garden for Plantation Crops of Assam Agricultural University, Jorhat, Assam. Treatments were made in an on going, long term shade experiment on mature tea bushes, adapted to three levels of shades viz. tea as monoculture; Tea based cropping system with Areca palm and Tea with Albizzia odoratissima. Results: Among different tea plantations, tea-albizzia recorded superior performance, followed by tea-areca palm plantation in respect to biomass accumulation and carbon sequestration. Similarly, higher carbon stock was found in tea-albizzia plantations along with other physiological and edaphic parameters related to carbon sequestration attributed to an increase in carbon stock. Interpretation: Tea-albizzia plantation system has maximum potential for carbon offsetting from the atmosphere as well as carbon storage both above and below ground in the plantation ecosystem which might be helpful for future carbon management and economy as a whole.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 129 ◽  
Author(s):  
Callie Oldfield ◽  
Chris Peterson

Salvage logging after wind disturbance of a mixed conifer-hardwood forest results in sapling compositional changes but no changes to species diversity six years post-disturbance. Several conceptual frameworks allow for predictions of the effects of forest disturbances on composition, but fewer yield predictions of species diversity. Following compound disturbance, tree species diversity and composition is predicted to shift to early successional species. Because of the greater cumulative severity, diversity should be lower in areas experiencing windthrow + salvage logging than in similar sites experiencing windthrow alone. We examined the effects of wind disturbance and salvage logging on diversity parameters over six years. We hypothesized that the effects of salvage logging on diversity would be short-lived, but that species composition would be altered six years post-disturbance. Sampling plots were established in a mixed-hardwood forest in north Georgia, USA, after a 2011 EF3 tornado and surveyed in 2012 and 2017. Nineteen 20 × 20 m plots were surveyed (10 unsalvaged, 9 salvaged) for parameters including Shannon diversity, species richness, and composition. Ordinations were used to visualize tree and sapling species composition in salvage logged plots. We found that there was no significant difference in Shannon diversity between salvaged and unsalvaged plots before disturbance, <1 post-disturbance, or 6 years post-disturbance. The disturbances altered the tree and sapling species compositions, with salvaged plots having more mid-successional saplings but few true pioneer species. There appears to be an emerging pattern in the wind disturbance + salvaging literature which our study supports– salvaging does not affect tree species diversity but shifts species composition over time.


2021 ◽  
Vol 249 ◽  
pp. 03011
Author(s):  
Annas Dwitri Malik ◽  
Maulida Isfahani Nurillah ◽  
Parikesit ◽  
Susanti Withaningsih ◽  
Ratna Wingit

Alternatives of vegetations to store carbon need to be encouraged considering that forests are threatened by widespread destructions. One such vegetation is grasslands which have the potential for carbon storage and to reduce CO2 concentration in the atmosphere. At present, many enterprises have designed grasslands for many purposes. Grasslands at Cikalong Wetan and Little Farmers, West Bandung Regency were established under different pattern of plantation stands. The purpose of this research was to study the potential of carbon stock in grassland vegetation at these locations. Based on RaCSA method, the tree biomass was determined by nondestructive collection of density and basal area of trees, then calculated by an allometric equation. The ground cover biomass was determined by destructive collection of grass and roots. Total measured biomass was multiplied by 46% to obtain carbon storage. Based on the results, the potential of carbon stock in Little Farmers grassland (159,540 ton ha-1) is higher than in Cikalong Wetan (14,482 ton ha-1). Carbon stored in tree biomass gives the highest contribution to overall carbon stock potential in Little Farmers (94.84%) while carbon stored in below-ground understorey biomass gives the highest contribution in Cikalong Wetan (52.13 %). Different management of grasslands and pattern of plantation stands resulting a different contribution of carbon stock in every carbon pool. In order to maintain the carbon sequestration potentials of these locations, an agroforestry management such as agri-silviculture need to be encouraged. This study gives a comparison of the carbon sequestration potentials between two man-made grassland ecosystems. For many enterprises this study will aid in a management planning of man-made grassland in terms of ecosystem services, that is carbon sequestration.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Viorel N. B. Blujdea ◽  
Richard Sikkema ◽  
Ioan Dutca ◽  
Gert-Jan Nabuurs

Abstract Background Forest carbon models are recognized as suitable tools for the reporting and verification of forest carbon stock and stock change, as well as for evaluating the forest management options to enhance the carbon sink provided by sustainable forestry. However, given their increased complexity and data availability, different models may simulate different estimates. Here, we compare carbon estimates for Romanian forests as simulated by two models (CBM and EFISCEN) that are often used for evaluating the mitigation options given the forest-management choices. Results The models, calibrated and parameterized with identical or harmonized data, derived from two successive national forest inventories, produced similar estimates of carbon accumulation in tree biomass. According to CBM simulations of carbon stocks in Romanian forests, by 2060, the merchantable standing stock volume will reach an average of 377 m3 ha−1, while the carbon stock in tree biomass will reach 76.5 tC ha−1. The EFISCEN simulations produced estimates that are about 5% and 10%, respectively, lower. In addition, 10% stronger biomass sink was simulated by CBM, whereby the difference reduced over time, amounting to only 3% toward 2060. Conclusions This model comparison provided valuable insights on both the conceptual and modelling algorithms, as well as how the quality of the input data may affect calibration and projections of the stock and stock change in the living biomass pool. In our judgement, both models performed well, providing internally consistent results. Therefore, we underline the importance of the input data quality and the need for further data sampling and model improvements, while the preference for one model or the other should be based on the availability and suitability of the required data, on preferred output variables and ease of use.


2016 ◽  
Vol 25 (2) ◽  
pp. e060 ◽  
Author(s):  
Lobna Zribi ◽  
Hatem Chaar ◽  
Abdelhamid Khaldi ◽  
Belgacem Henchi ◽  
Florent Mouillot ◽  
...  

Aim of the study. To estimate biomass and carbon accumulation in a young and disturbed forest (regenerated after a tornado) and an aged cork oak forest (undisturbed forest) as well as its distribution among the different pools (tree, litter and soil).Area of study. The north west of TunisiaMaterial and methods. Carbon stocks were evaluated in the above and belowground cork oak trees, the litter and the 150 cm of the soil. Tree biomass was estimated in both young and aged forests using allometric biomass equations developed for wood stem, cork stem, wood branch, cork branch, leaves, roots and total tree biomass based on combinations of diameter at breast height, total height and crown length as independent variables.Main results. Total tree biomass in forests was 240.58 Mg ha-1 in the young forest and 411.30 Mg ha-1 in the aged forest with a low root/shoot ratio (0.41 for young forest and 0.31 for aged forest). Total stored carbon was 419.46 Mg C ha-1 in the young forest and 658.09 Mg C ha-1 in the aged forest. Carbon stock (Mg C ha-1) was estimated to be113.61(27.08%) and 194.08 (29.49%) in trees, 3.55 (0.85%) and 5.73 (0.87%) in litter and 302.30 (72.07%) and 458.27 (69.64%) in soil in the young and aged forests, respectively.Research highlights. Aged undisturbed forest had the largest tree biomass but a lower potential for accumulation of carbon in the future; in contrast, young disturbed forest had both higher growth and carbon storage potential.Keywords: Tree biomass; disturbance; allometry; cork oak forests; soil organic carbon stock.


2012 ◽  
Vol 9 (8) ◽  
pp. 3381-3403 ◽  
Author(s):  
T. R. Feldpausch ◽  
J. Lloyd ◽  
S. L. Lewis ◽  
R. J. W. Brienen ◽  
M. Gloor ◽  
...  

Abstract. Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (≤40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha−1 (range 6.6 to 112.4) to 8.0 Mg ha−1 (−2.5 to 23.0). For all plots, aboveground live biomass was −52.2 Mg ha−1 (−82.0 to −20.3 bootstrapped 95% CI), or 13%, lower when including H estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly more biomass in small diameter stems, which affects selection of the best height models to reduce uncertainty and biomass reductions due to H. After accounting for variation in H, total biomass per hectare is greatest in Australia, the Guiana Shield, Asia, central and east Africa, and lowest in east-central Amazonia, W. Africa, W. Amazonia, and the Brazilian Shield (descending order). Thus, if tropical forests span 1668 million km2 and store 285 Pg C (estimate including H), then applying our regional relationships implies that carbon storage is overestimated by 35 Pg C (31–39 bootstrapped 95% CI) if H is ignored, assuming that the sampled plots are an unbiased statistical representation of all tropical forest in terms of biomass and height factors. Our results show that tree H is an important allometric factor that needs to be included in future forest biomass estimates to reduce error in estimates of tropical carbon stocks and emissions due to deforestation.


2015 ◽  
Vol 112 (43) ◽  
pp. 13267-13271 ◽  
Author(s):  
Geertje M. F. van der Heijden ◽  
Jennifer S. Powers ◽  
Stefan A. Schnitzer

Tropical forests store vast quantities of carbon, account for one-third of the carbon fixed by photosynthesis, and are a major sink in the global carbon cycle. Recent evidence suggests that competition between lianas (woody vines) and trees may reduce forest-wide carbon uptake; however, estimates of the impact of lianas on carbon dynamics of tropical forests are crucially lacking. Here we used a large-scale liana removal experiment and found that, at 3 y after liana removal, lianas reduced net above-ground carbon uptake (growth and recruitment minus mortality) by ∼76% per year, mostly by reducing tree growth. The loss of carbon uptake due to liana-induced mortality was four times greater in the control plots in which lianas were present, but high variation among plots prevented a significant difference among the treatments. Lianas altered how aboveground carbon was stored. In forests where lianas were present, the partitioning of forest aboveground net primary production was dominated by leaves (53.2%, compared with 39.2% in liana-free forests) at the expense of woody stems (from 28.9%, compared with 43.9%), resulting in a more rapid return of fixed carbon to the atmosphere. After 3 y of experimental liana removal, our results clearly demonstrate large differences in carbon cycling between forests with and without lianas. Combined with the recently reported increases in liana abundance, these results indicate that lianas are an important and increasing agent of change in the carbon dynamics of tropical forests.


2020 ◽  
pp. 1-7
Author(s):  
Brandon R. Hays ◽  
Corinna Riginos ◽  
Todd M. Palmer ◽  
Benard C. Gituku ◽  
Jacob R. Goheen

Abstract Quantifying tree biomass is an important research and management goal across many disciplines. For species that exhibit predictable relationships between structural metrics (e.g. diameter, height, crown breadth) and total weight, allometric calculations produce accurate estimates of above-ground biomass. However, such methods may be insufficient where inter-individual variation is large relative to individual biomass and is itself of interest (for example, variation due to herbivory). In an East African savanna bushland, we analysed photographs of small (<5 m) trees from perpendicular angles and fixed distances to estimate above-ground biomass. Pixel area of trees in photos and diameter were more strongly related to measured, above-ground biomass of destructively sampled trees than biomass estimated using a published allometric relation based on diameter alone (R2 = 0.86 versus R2 = 0.68). When tested on trees in herbivore-exclusion plots versus unfenced (open) plots, our predictive equation based on photos confirmed higher above-ground biomass in the exclusion plots than in unfenced (open) plots (P < 0.001), in contrast to no significant difference based on the allometric equation (P = 0.43). As such, our new technique based on photographs offers an accurate and cost-effective complement to existing methods for tree biomass estimation at small scales with potential application across a wide variety of settings.


Sign in / Sign up

Export Citation Format

Share Document