scholarly journals Captures of Emerald Ash Borer (Agrilus planipennis) Adults in Post-Invasion White Ash Sites with Varying Amounts of Live Phloem

Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 262
Author(s):  
Molly A. Robinett ◽  
Therese M. Poland ◽  
Deborah G. McCullough

Emerald ash borer (EAB), (Agrilus planipennis Fairmaire), first identified in 2002 in southeast Michigan, has caused catastrophic ash (Fraxinus spp.) mortality in forests within the core of the invasion and has spread to 35 states and five Canadian provinces. Little is known about persistence and densities of EAB populations in post-invasion sites after most ash trees have died. We monitored EAB populations from 2014 to 2016 using double decker (DD) traps set in the midst of white ash (F. americana) trees in 30 post-invasion sites in southeast and south-central Michigan. Two DD traps were deployed at each site. One trap had a dark green upper prism and light purple lower prism, both baited with cis-3-hexenol lures. The other had two dark purple prisms baited with cis-3-hexenol on the upper prism and Manuka oil on the lower prism. In 2014 and 2016, size and condition of ash trees were recorded and area of live white ash phloem was estimated in an 18-m-radius plot centered around each of the DD traps. Area of live white ash phloem per site ranged from approximately 24 to 421 m2 in 2014 and from 24 to 411 m2 in 2016. Canopy condition of live white ash trees generally improved; 65% and 89% of the trees had healthy canopies (<20% dieback) in 2014 and 2016, respectively. Traps in 28, 29 and 30 of the sites captured a total of 580, 585, and 932 EAB adults in 2014–2016, respectively. Area of live ash phloem explained relatively little of the variation in total EAB captures in all three years. Low trap catches, along with relatively stable canopy conditions and continued abundance of live white ash, indicate that EAB populations remain below the carrying capacity of the sites, and ash phloem availability is not a limiting factor for EAB abundance. Further monitoring to track both EAB dynamics and tree condition is needed to determine the long-term outlook for white ash in these sites.

2016 ◽  
Vol 42 (6) ◽  
Author(s):  
Sara Tanis ◽  
Deborah McCullough

Emerald ash borer (EAB) (Agrilus planipennis), first identified near Detroit, Michigan, U.S., in 2002, has killed millions of ash trees (Fraxinus spp.) in 28 states and two Canadian provinces to date. Trunk injections of insecticide products containing emamectin benzoate (EB) (e.g., TREE-ageR) are often used to protect ash trees in landscapes from EAB, but wounds and potential injury resulting from injections are a concern. Researchers examined 507 injection sites on 61 trees and recorded evidence of secondary wounding (e.g., external bark cracks, internal xylem necrosis and pathogen infection). Researchers assessed 233 injection sites on 22 green ash and 24 white ash trees macro-injected with a low or a medium-high rate of EB in 2008 only, or in both 2008 and 2009. Only 12 of 233 injection sites (5%) were associated with external bark cracks and there was no evidence of pathogen infection. On 39 of the 46 trees (85%), new xylem was growing over injection sites. Researchers assessed 274 injection sites on 15 green ash trees injected annually with EB from 2008 to 2013 or injected in 2008 and again in 2011. Bark cracks were associated with four injection sites on three trees, but no evidence of injury was found on the other 12 trees. All 15 trees had new xylem laid over injection sites. Confocal laser scanning and polarizing digital microscopy were used to assess the integrity of discolored xylem tissue removed from the immediate area surrounding 140 injection sites on 61 trees. Researchers found no evidence of decay associated with discoloration.


2011 ◽  
Vol 28 (2) ◽  
pp. 79-83 ◽  
Author(s):  
Toby R. Petrice ◽  
Robert A. Haack

Abstract Efforts to eradicate or slow the spread of emerald ash borer (EAB) (Agrilus planipennis Fairmaire [Coleoptera: Buprestidae]) include cutting infested and nearby uninfested ash (Fraxinus spp.) trees. However, ash trees readily sprout after they have been cut, providing potential host material for EAB. In 2004–2005, we conducted studies to determine how different cutting times (midspring, late spring, and late summer), different cutting heights (0–5, 10–15, and 20–25 cm above the ground), and triclopyr (44% active ingredient) stump treatment of green ash (Fraxinus pennsylvanica Marsh.) trees affected subsequent stump sprouting and colonization by EAB. We also cut white ash (Fraxinus americana L.) and black ash (Fraxinus nigra Marsh.) trees 20–25 cm above the ground in late spring. Some stumps of each ash species tested sprouted and were colonized by EAB. All green ash stumps treated with triclopyr died and were not colonized by EAB. Stump sprouting was significantly lower for stumps cut in late spring compared with stumps cut in midspring or late summer. Stump sprouting did not vary significantly among cutting heights. None of the green ash stumps cut in midspring or cut 0–5 cm above the ground were colonized by EAB; however, the frequency of stump colonization by EAB did not vary significantly among cutting times or cutting heights.


2007 ◽  
Vol 33 (5) ◽  
pp. 338-349
Author(s):  
Andrea Anulewicz ◽  
Deborah McCullough ◽  
David Cappaert

Emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae), a phloem-feeding insect native to Asia, was identified in 2002 as the cause of widespread ash (Fraxinus) mortality in southeast Michigan, U.S. and Windsor, Ontario, Canada. Little information about A. planipennis is available from its native range and it was not known whether this invasive pest would exhibit a preference for a particular North American ash species. We monitored A. planipennis density and canopy condition on green ash (F. pennsylvanica) and white ash (F. americana) street trees in four neighborhoods and on white and blue ash (F. quadrangulata) trees in two woodlots in southeast Michigan. Green ash street trees had significantly more canopy dieback and higher A. planipennis densities than white ash trees growing in the same neighborhood. Density increased by two- to fourfold in both species over a 3-year period. Canopy dieback increased linearly from 2002 to 2005 as A. planipennis density increased (R 2= 0.70). In each of the woodlots, A. planipennis densities were significantly higher on white ash trees than blue ash trees. Woodpecker predation occurred in all sites and accounted for 35% of the A. planipennis that developed on trees we surveyed. Results indicate that surveys for A. planipennis detection in areas with multiple ash species should focus on the relatively preferred species.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1509
Author(s):  
Nickolas N. Rajtar ◽  
Benjamin W. Held ◽  
Robert A. Blanchette

The emerald ash borer (EAB, Agrilus planipennis) is a devastating invasive pest that has killed millions of ash trees in the United States and Canada. EAB was discovered in the US in 2002 and first reported in Minnesota in 2009. It attacks ash trees that are native to the United States, including Fraxinus americana (white ash), F. nigra (black ash) and F. pennsylvanica (green ash). It also attacks Chionanthus virginicus (white fringe tree). Seven species of fungi isolated and identified only from EAB-infested trees in a previous study as having the potential to cause cankers were used to test their pathogenicity in F. americana (white ash). The fungi used were Cytospora pruinosa, Diplodia mutila, Diplodia seriata, Paraconiothyrium brasiliense, Phaeoacremonium minimum, Phaeoacremonium scolyti, and Thyronectria aurigera. Two field experiments that used F. americana used two inoculation methods: woodchip and agar plug inoculations. Results indicated that all of the fungi tested caused cankers in varying amounts, as compared to the controls. The largest cankers were caused by D. mutila (270 mm2), C. pruinosa (169 mm2), and D. seriata (69 mm2). All fungi except for T. aurigera were re-isolated and sequenced to confirm Kochs’ postulates. Canker-causing fungi found in association with EAB galleries have the potential to contribute to tree dieback and mortality.


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 258 ◽  
Author(s):  
Marina J. Orlova-Bienkowskaja ◽  
Andrzej O. Bieńkowski

The emerald ash borer, EAB (Agrilus planipennis) is a devastating alien pest of ash trees. It is spreading in European Russia and Ukraine and will appear in other European countries. Our aim was to determine the regions of Europe where the winter temperature drops low enough to prevent A. planipennis establishment. We calculated the minimum daily air temperature from 2003–2019 for each grid square (0.5° × 0.5°) in East Asia, North America and Europe and determined the minimum daily temperature in the grid squares where A. planipennis was recorded. Temperatures of −30 to −33 °C occur in the northern portions of the pest range on all continents. No established population has been recorded in localities where temperatures below −34 °C occur. This temperature is close to the absolute supercooling point of A. planipennis larva (−35.3 °C). It is unlikely that low temperatures could prevent the spread of A. planipennis in northern Western Europe (Sweden, Norway, Finland, etc.), since the temperature in this area did not fall to −34 °C from 2003–2019. However, such temperatures are not rare in eastern European Russia (Kostroma, Vologda, Orenburg regions, etc.), where Fraxinus pennsylvanica and F. excelsior occur. These regions could potentially become refuges for these ash species.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2734 ◽  
Author(s):  
Sohail Qazi ◽  
Domenic Lombardo ◽  
Mamdouh Abou-Zaid

The Emerald Ash Borer (EAB), Agrilus planipennis, Fairmaire, an Asian invasive alien buprestid has devastated tens of millions of ash trees (Fraxinus spp.) in North America. Foliar phytochemicals of the genus Fraxinus (Oleaceae): Fraxinus pennsylvanica (Green ash), F. americana (White ash), F. profunda (Bush) Bush. (Pumpkin ash), F. quadrangulata Michx. (Blue ash), F. nigra Marsh. (Black ash) and F. mandshurica (Manchurian ash) were investigated using HPLC-MS/MS and untargeted metabolomics. HPLC-MS/MS help identified 26 compounds, including phenolics, flavonoids and coumarins in varying amounts. Hydroxycoumarins, esculetin, esculin, fraxetin, fraxin, fraxidin and scopoletin were isolated from blue, black and Manchurian ashes. High-throughput metabolomics revealed 35 metabolites, including terpenes, secoiridoids and lignans. Metabolomic profiling indicated several upregulated putative compounds from Manchurian ash, especially fraxinol, ligstroside, oleuropin, matairesinol, pinoresinol glucoside, 8-hydroxypinoresinol-4-glucoside, verbenalin, hydroxytyrosol-1-O-glucoside, totarol and ar-artemisene. Further, dicyclomine, aphidicolin, parthenolide, famciclovir, ar-turmerone and myriocin were identified upregulated in blue ash. Principal component analysis demonstrated a clear separation between Manchurian and blue ashes from black, green, white and pumpkin ashes. The presence of defensive compounds upregulated in Manchurian ash, suggests their potential role in providing constitutive resistance to EAB, and reflects its co-evolutionary history with A. planipennis, where they appear to coexist in their native habitats.


2019 ◽  
Vol 49 (5) ◽  
pp. 510-520 ◽  
Author(s):  
Molly A. Robinett ◽  
Deborah G. McCullough

Despite catastrophic ash (Fraxinus spp.) mortality observed by the mid-2000s in the epicenter of the emerald ash borer (EAB) (Agrilus planipennis Fairmaire) invasion in southeast Michigan, we noticed numerous live white ash (Fraxinus americana L.) in some forests in this region. In 2015, we inventoried overstory trees and regeneration in 28 white ash sites spanning 11 counties. White ash survival ranged from 0% to 100% of stems. Overall, 75% of 821 white ash trees, ranging from 10.0 to 44.0 cm diameter at breast height, and 66% of the white ash basal area, ranging from 0.3 to 3.5 m2·ha–1, were alive. Nearly all live white ash had signs of previous EAB colonization, but 83% had healthy canopies (≤10% canopy dieback). Green ash trees were recorded in 27 sites, but 92% were killed by EAB. Model selection indicated that variation in white ash survival was related to white ash abundance and distance of sites from the original EAB epicenter but not to green ash related variables or to the distance of sites from the Asian parasitoid release or recovery locations. Regeneration strata were dominated by white ash, suggesting that some white ash populations may persist in post-invasion areas.


2020 ◽  
Vol 93 (2) ◽  
pp. 326-330 ◽  
Author(s):  
Ute Hoyer-Tomiczek ◽  
Gernot Hoch

Abstract Early detection of infestation by the emerald ash borer (EAB), Agrilus planipennis is extremely difficult; hence developing additional methods is desirable. We built on the successful use of canine scent detection for the invasive long-horned beetles Anoplophora glabripennis and Anoplophora chinensis and trained six dogs in detection of EAB. A first test series was performed to evaluate detection accuracy of five of these dogs. Seven different experimental settings were tested under single blind conditions: (1) forest nursery, (2) piles of firewood, (3) firewood on the ground, (4) ash logs on the ground, (5) old urban ash trees, (6) urban forest with ash trees and (7) natural forest with ash trees. In total, 214 positive samples were presented to the dogs, out of which 20 remained undetected. The experiments ascertained sensitivity (correct positives of all positives) ranging from 73.3 to 100 percent and specificity (correct negatives of all negatives) from 88.9 to 99.8 percent in the tested settings. This initial study demonstrates that trained dogs are able to detect EAB scent from sources such as larval galleries in bark/wood, frass, living or dead larvae or dead dry beetles. The numbers of tested dogs and test series were limited, and further studies are needed to confirm the initial results. However, the preliminary findings demonstrate the potential of the method particularly for inspection of wood or plants at entry points.


2019 ◽  
Vol 45 (3) ◽  
Author(s):  
Laurel Haavik ◽  
Daniel Herms

The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) invasion of North America has increased interest in ash (Fraxinus, Oleaceae) phylogeny, ecology, and physiology. In a common garden in central Ohio, we compared the performance of three North American ash cultivars that are highly susceptible to EAB (F. pennsylvanica ‘Patmore,’ F. americana ‘Autumn Purple,’ and F. nigra ‘Fall Gold’), one North American species that is less susceptible to EAB (F. quadrangulata), and two taxa that are resistant to EAB (F. mandshurica and F. mandshurica × F. nigra ‘Northern Treasure’). During the 2015 growing season, we measured diameter growth, foliar N concentration, specific leaf area, and on four dates (two with adequate and two with low precipitation) we measured CO2 assimilation rate (A), stomatal conductance (gs), intercellular CO2 concentration (Ci), photosynthetic nitrogen use efficiency (PNUE), variable fluorescence (Fv’/Fm’: efficiency of energy harvested by open photosystem II reaction centers), and the fraction of photons absorbed by photosystem II that were used for photosynthesis (ɸPSII). F. pennsylvanica grew fastest and on most sampling dates was superior in physiological performance (A, gs, and ɸPSII). Generally, however, there was little interspecific variation in growth and physiology among the different ash taxa tested, as all performed well. This suggests that the EAB-resistant F. mandshurica and F. mandshurica × F. nigra hybrid, as well as the moderately resistant blue ash, are as physiologically well-suited to growing conditions in the Midwestern United States as green and white ash cultivars that had been widely planted prior to the EAB invasion.


Insects ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 338 ◽  
Author(s):  
Drogvalenko ◽  
Orlova-Bienkowskaja ◽  
Bieńkowski

Agrilus planipennis (Coleoptera: Buprestidae) is a devastating invasive pest of ash trees. This wood-boring insect is native to Asia and established in European Russia about 20 years ago. It severely damages Fraxinus pennsylvanica plantations and quickly spreads. In 2019 we first detected A. planipennis in Ukraine. More than 20 larvae were collected from under the bark of F. pennsylvanica trees on 5 September 2019 in the Markivka District of the Luhansk Region. The coordinates of the localities of collection were 49.614991 N, 39.559743 E; 49.614160 N, 39.572402 E; and 49.597043 N, 39.561811 E. The photos of the damaged trees with larval galleries, exit holes and larvae are presented. It indicates that A. planipennis is established in the east of Ukraine. This fact is important for development of quarantine protocols to prevent or at least slow the further spread of this invasive pest in Europe.


Sign in / Sign up

Export Citation Format

Share Document