scholarly journals Pinus Pollen Emission Patterns in Different Bioclimatic Areas of the Iberian Peninsula

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 688
Author(s):  
María Fernández-González ◽  
Beatriz Lara ◽  
Estefanía González-Fernández ◽  
Jesús Rojo ◽  
Rosa Pérez-Badia ◽  
...  

Background: In the Northern Hemisphere, pine forests predominate due to their natural distribution and silvicultural importance. Pinus tree species are large pollen producers. Nowadays, the context of climate change influences their distribution, abundance, growth and productivity. The objectives of the study were to assess the patterns of the Pinus flowering behavior regarding their pollen presence in the atmosphere and intensity in different bioclimatic areas of the Iberian Peninsula during recent years. Methods: The survey was carried out in three different biogeographic zones of Spain: Vigo (Eurosiberian region) and Ourense (transition area between the Eurosiberian and Mediterranean areas) located in northwest Spain and Toledo (Mediterranean area) placed in the center of the Iberian Peninsula. Airborne pollen was collected with volumetric traps in each study area from 1995 to 2019. Results: Pinus pollen showed a marked single pollination period during late March in the Eurosiberian region and April in the transition zone between the Eurosiberian and the Mediterranean area. Two different peaks with lower pollen intensity were detected during the pollen season in Toledo (Mediterranean area), the first during late March and the second from the end of May to the beginning of June. The trends detected revealed changes in the timing of the phenological cycle, such us longer pollen seasons and later end dates of the Main Pollen Season (MPS) in some cases. The mean Annual Pollen Integral (API) in the Eurosiberian area (Vigo) and transition zone (Ourense) was similar, with about 4400 pollen grains. In the Mediterranean area (Toledo), a lower API amount of 1618 pollen grains was recorded. A trend towards an increase of 126 and 80 pollen grains per year in the airborne pine load was detected in the transition and Mediterranean areas studied, respectively. Conclusions: The rates of the annual integral Pinus pollen percentage with respect to the total pollen of forest species in the atmosphere of the areas studied showed a decreasing percentage trend during the last years.

Aerobiologia ◽  
2020 ◽  
Vol 36 (4) ◽  
pp. 669-682 ◽  
Author(s):  
Antonella Cristofori ◽  
Edith Bucher ◽  
Michele Rossi ◽  
Fabiana Cristofolini ◽  
Veronika Kofler ◽  
...  

AbstractArtemisia pollen is an important aeroallergen in late summer, especially in central and eastern Europe where distinct anemophilous Artemisia spp. produce high amounts of pollen grains. The study aims at: (i) analyzing the temporal pattern of and changes in the Artemisia spp. pollen season; (ii) identifying the Artemisia species responsible for the local airborne pollen load.Daily pollen concentration of Artemisia spp. was analyzed at two sites (BZ and SM) in Trentino-Alto Adige, North Italy, from 1995 to 2019.The analysis of airborne Artemisia pollen concentrations evidences the presence of a bimodal curve, with two peaks, in August and September, respectively. The magnitude of peak concentrations varies across the studied time span for both sites: the maximum concentration at the September peak increases significantly for both the BZ (p < 0.05) and SM (p < 0.001) site. The first peak in the pollen calendar is attributable to native Artemisia species, with A. vulgaris as the most abundant; the second peak is mostly represented by the invasive species A. annua and A. verlotiorum (in constant proportion along the years), which are causing a considerable increase in pollen concentration in the late pollen season in recent years.. The spread of these species can affect human health, increasing the length and severity of allergenic pollen exposure in autumn, as well as plant biodiversity in both natural and cultivated areas, with negative impacts on, e.g., Natura 2000 protected sites and crops.


2012 ◽  
Vol 60 (2) ◽  
pp. 51-55 ◽  
Author(s):  
Idalia Kasprzyk ◽  
Adam Walanus

The time pattern of flowering significantly affects the pollen season, its beginning, length and the concentration of pollen grains in air. The forecasting models used in aerobiological studies were chiefly based on the elements of weather conditions; however, recently the phenology of pollen shedding has been taken into consideration in these models more and more frequently. The aim of the presented investigations was to determine to what extent the flowering and the occurrence of allergenic pollen grains in air coincided in time. The investigation was carried out in Rzeszów (SE Poland) in the years 2003-2004. The flowering of 19 allergenic plant species was observed and seven phenophases were distinguished. Aerobiological monitoring was based on the volumetric method. In the case of most herbaceous plants, the flowering period overlapped the pollen season, high concentrations of pollen being recorded throughout several phenophases. In general, the pollen of trees occurred during very short periods, frequently during one phenophase, while the investigated phenomena were missing each other. The most intensive growth of inflorescences of alder, hazel and birch was observed at the beginning of full fl owering or towards the end of full flowering.


2020 ◽  
Vol 80 (1) ◽  
pp. 19-42
Author(s):  
C Merkenschlager ◽  
E Hertig

Within the context of analyzing daily heavy precipitation events in the Mediterranean under enhanced greenhouse gas forcing in the 21st century, a new method considering non-stationarities in the relationships of large-scale circulation predictors and regional precipitation extremes was applied. The Mediterranean area was split into up to 22 precipitation regions, and analyses were performed separately for 3 different seasons (autumn, winter and spring) and 3 different quantiles (90th, 95th and 99th). Estimations are based on a three-step censored quantile regression. Future estimations are performed by means of 3 model runs of the Max Planck Institute Earth System Model with Low Resolution (MPI-ESM-LR) for representative concentration pathways (RCPs) 4.5 and 8.5. Overall, the Mediterranean is mainly characterized by decreasing quantile values. Especially in the regions in the southeast, declines are significant, with up to 71.7% (-1.65 mm) in the Levante region (autumn) and over 16 mm (-38.2%) on Crete (winter). Increased precipitation quantiles were only assessed for a more or less extended region in the northern parts of the Central Mediterranean (winter and spring), for the northeastern coast of the Iberian Peninsula (autumn) and for northern Spain (spring). Overall, analyses showed that non-stationarities seriously affect precipitation behavior in most parts of the Mediterranean. Results indicated that 2 different regimes (western and eastern) inducing non-stationarities are predominant in the Mediterranean area. In autumn (winter), the western (eastern) regime is limited to the Iberian Peninsula (Levante), whereas in spring, the area of influence of both regimes is of equal size.


Phytotaxa ◽  
2015 ◽  
Vol 233 (1) ◽  
pp. 94 ◽  
Author(s):  
PEDRO PABLO FERRER-GALLEGO ◽  
Ángel Romo ◽  
Roberto Roselló ◽  
Emilio Laguna ◽  
Juan Bautista Peris

The genus Jasione Linnaeus (1753: 163) (Campanulaceae Juss.) is represented by ca. 16 species distributed throughout Europe and the Mediterranean Region, from coastal dunes to alpine zones, and growing on a wide variety of substrates as well (Sales & Hedge 2001b). The genus shows a high degree of polymorphism, which can be partially caused by its representation accross a wide range of ecological niches. This variability reaches its maximum expression within the Iberian Peninsula (Bokhari & Sales 2001).


2018 ◽  
Vol 53 (2) ◽  
pp. 239-253
Author(s):  
Leticia Tejera ◽  
Ángeles Beri ◽  
Ximena Martínez Blanco

: This paper analyses daily and seasonal variations on pollen concentrations and the influence of meteorological conditions on the airborne pollen from June 2011 to May 2014. Data is also compared with results from a previous pollen survey from 2000-2001. Ninety-three taxa were identified, belonging to 49 trees and shrub taxa and 44 herbaceous taxa. The most important pollen sources were Poaceae, Platanus, Cupressaceae/Taxaceae, Eupatorieae type, Celtis, Urticaceae, Myrtaceae, Casuarina, Amaranthaceae, Cyperaceae, Fraxinus, Arecaceae, Ricinus communis, Moraceae, Myrsine, Ambrosia, Quercus, and Pinaceae. Pollen was recorded all year round but the main pollen season was from August to April. Inter-annual differences were observed on pollen indexes, dates and values of daily peak concentrations and monthly accumulated concentrations. Temperature, relative air humidity and wind speed and direction seem to be the most influential meteorological variables on pollen concentrations. The number of days that pollen concentrations are above moderate and high thresholds levels is estimated and woody and non-woody pollen concentrations would be above moderate levels on average 182 days per year.


2016 ◽  
Vol 60 (2) ◽  
pp. 193-208
Author(s):  
Agnieszka Dąbrowska ◽  
Krystyna Piotrowska-Weryszko ◽  
Elżbieta Weryszko-Chmielewska ◽  
Ryszard Sawicki

Abstract All lindens provide Apidae insects with nectar, pollen, and honeydew. Lindens are important melliferous trees in Poland. The first purpose of the study was to carry out phenological observations of the flowering in ten linden taxa. The second aim was to analyse the content of linden pollen grains in the air of Lublin. A correlation between the parameters of the pollen season and meteorological factors was also determined. This study was conducted in the city of Lublin located in the central-eastern part of Poland. The flowering phenophases were analysed, using the method developed by Łukasiewicz, during the growing seasons of 2012-2015. Aerobiological monitoring, which was based on the volumetric method, was carried out over the 2001-2014 time period. As shown in the study, the flowering period of all the analysed linden taxa lasted 7 weeks, on average, from June 7 to July 24. The average length of the flowering period of the investigated taxa and hybrids was in the range of 12-17 days. Their flowering periods overlapped. The atmospheric pollen season lasted, on average, from mid-June to the second 10-day period of July. The highest concentration of airborne pollen was noted at the end of June. The pollen season pattern was significantly affected by temperature and relative air humidity as well as by rainfall in May and June. The investigations indicate a 9-day acceleration of the pollen season, which may be associated with global warming.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 254
Author(s):  
Concepción De Linares ◽  
Maria Pilar Plaza ◽  
Ana M. Valle ◽  
Purificación Alcázar ◽  
Consuelo Díaz de la Guardia ◽  
...  

Cupressaceae pollen is responsible for winter respiratory allergies in the Mediterranean area. Pollen grains of this diverse family share the same characteristics under light microscopy. Consequently, the partial contribution of each Cupressaceae species to the airborne pollen spectrum cannot be determined with conventional aerobiological methods. Studies on major aeroallergens offer better information on the allergic sensitization and appearance of symptoms in patients sensitized to airborne pollen and spores. Our aim was to determine if airborne Cupressaceae pollen concentrations correspond to aerodynamics of the major allergen of Cupressus (Cup a 1), as well as the aeroallergen correlation with different-sized particles. The air was sampled in two cities of Southern Spain (Granada and Córdoba) using the Hirst-type volumetric sampler for airborne pollen detection during 2006 to 2008 and the Andersen Cascade Impactor for aeroallergen detection during the main pollination period of Cupressaceae in the same period. The samples were analyzed by the methodology proposed by the Spanish Aerobiology Network (REA), the minimum requirements of the European Aeroallergen Society (EAS) for pollen, and by ELISA immunoassay to detect airborne Cup a 1. The distribution patterns of airborne Cupressaceae pollen and Cup a 1 were observed throughout the sampling period, although with some irregular oscillations. Cupressaceae pollen and Cup a 1 showed positive and significant correlation during the period of maximum concentrations (January to March). However, the results of this study showed that the period of exposure of aeroallergens depends on the Cupressus species and their abundance in cities. According to the allergy potential obtained, species like C. arizonica could release more allergens than other species like C. sempervirens.


2019 ◽  
Vol 37 (4) ◽  
pp. 1041-1055 ◽  
Author(s):  
Candela L Hernández ◽  
Guillermo Pita ◽  
Bruno Cavadas ◽  
Saioa López ◽  
Luis J Sánchez-Martínez ◽  
...  

Abstract Throughout the past few years, a lively debate emerged about the timing and magnitude of the human migrations between the Iberian Peninsula and the Maghreb. Several pieces of evidence, including archaeological, anthropological, historical, and genetic data, have pointed to a complex and intermingled evolutionary history in the western Mediterranean area. To study to what extent connections across the Strait of Gibraltar and surrounding areas have shaped the present-day genomic diversity of its populations, we have performed a screening of 2.5 million single-nucleotide polymorphisms in 142 samples from southern Spain, southern Portugal, and Morocco. We built comprehensive data sets of the studied area and we implemented multistep bioinformatic approaches to assess population structure, demographic histories, and admixture dynamics. Both local and global ancestry inference showed an internal substructure in the Iberian Peninsula, mainly linked to a differential African ancestry. Western Iberia, from southern Portugal to Galicia, constituted an independent cluster within Iberia characterized by an enriched African genomic input. Migration time modeling showed recent historic dates for the admixture events occurring both in Iberia and in the North of Africa. However, an integrative vision of both paleogenomic and modern DNA data allowed us to detect chronological transitions and population turnovers that could be the result of transcontinental migrations dating back from Neolithic times. The present contribution aimed to fill the gaps in the modern human genomic record of a key geographic area, where the Mediterranean and the Atlantic come together.


2021 ◽  
Vol 2 ◽  
Author(s):  
Annette Menzel ◽  
Homa Ghasemifard ◽  
Ye Yuan ◽  
Nicole Estrella

Climate impacts on the pollen season are well-described however less is known on how frequently atmospheric transport influences the start of the pollen season. Based on long-term phenological flowering and airborne pollen data (1987–2017) for six stations and seven taxa across Bavaria, Germany, we studied changes in the pollen season, compared pollen and flowering season start dates to determine pollen sources, and analyzed the likelihood of pollen transport by HYSPLIT back trajectories. Species advanced their pollen season more in early spring (e.g., Corylus and Alnus by up to 2 days yr−1) than in mid spring (Betula, Fraxinus, Pinus); Poaceae and Artemisia exhibited mixed trends in summer. Annual pollen sums mainly increased for Corylus and decreased for Poaceae and Artemisia. Start of pollen season trends largely deviated from flowering trends, especially for Corylus and Alnus. Transport phenomena, which rely on comparisons between flowering and pollen dates, were determined for 2005–2015 at three stations. Pre-season pollen was a common phenomenon: airborne pollen was predominantly observed earlier than flowering (median 17 days) and in general, in 63% of the cases (except for Artemisia and Poaceae, and the alpine location) the pollen sources were non-local (transported). In 54% (35%) of these cases, back trajectories confirmed (partly confirmed) the pre-season transport, only in 11% of the cases transport modeling failed to explain the records. Even within the main pollen season, 70% of pollen season start dates were linked to transport. At the alpine station, non-local pollen sources (both from outside Bavaria as well as Bavarian lowlands) predominated, in only 13% of these cases transport could not be confirmed by back trajectories. This prominent role of pollen transport has important implications for the length, the timing, and the severity of the allergenic pollen season, indicating only a weak dependency on flowering of local pollen sources.


Author(s):  
Diego Gil-Tapetado ◽  
Francisco José Cabrero-Sañudo ◽  
Carlo Polidori ◽  
Jose F. Gómez ◽  
José Luis Nieves-Aldrey

Abstract The alien cynipid wasp Dryocosmus kuriphilus Yasumatsu, 1951 is a serious pest of chestnuts (Castanea spp.) in Japan, North America and Europe, causing fruit losses while inducing galls in buds. While D. kuriphilus galls have a recognizable and roughly invariable globular shape, their size varies, reaching up to 4 cm in diameter. Among other factors, such variation may depend on different climatic conditions in different attacked areas. Here, we sampled and measured 375 D. kuriphilus galls from 25 localities throughout the Iberian Peninsula, including both cold and rainy northern (Eurosiberian) areas and warm and dry central-southern (Mediterranean) areas, to test the effects of climate and geographical location on gall morphology. The analyses indicate that gall mass and volume follow a pattern that can be associated with a climatic cline. In particular, the Eurosiberian galls were smaller than the Mediterranean galls according to differences in climatic conditions. In the southern areas, the greater insolation regime does not allow the chestnut trees to be distributed at lower altitudes, but the high rainfall and humidity regime of the mountain enclaves allow their presence. These conditions of insolation and precipitation seem to influence the morphological characteristics of the galls of D. kuriphilus.


Sign in / Sign up

Export Citation Format

Share Document