scholarly journals Fire History (1896–2013) in an Abies religiosa Forest in the Sierra Norte of Puebla, Mexico

Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 700
Author(s):  
Julián Cerano-Paredes ◽  
Dante A. Rodríguez-Trejo ◽  
José M. Iniguez ◽  
Rosalinda Cervantes-Martínez ◽  
José Villanueva-Díaz ◽  
...  

The oyamel forests, as Abies dominated forests are commonly known as, register their largest distribution (95% of their population) along the Trans-Mexican Volcanic Belt (TMVB). Although efforts have been made to study these forests with various approaches, dendrochronology-based studies have been limited, particularly in pure Abies forests in this region. The objective of this study was to reconstruct fire regimes in an Abies religiosa forest in the Sierra Norte in the state of Puebla, Mexico. Within an area of 50-ha, we collected 40 fire-scar samples, which were processed and analyzed using dendrochronological techniques to identify 153 fire scars. The fire history was reconstructed for a period of 118 years (1896–2013), with low severity surface fires occurring mainly during in the spring (92.8%) and summer (7.2%). Over the past century, fires were frequent, with an mean fire interval (MFI) and Weibull median probability of (WMPI) of five years when considering all fire scars and less than 10 years for fires covering larger areas (fires recorded by ≥25% of samples). Extensive fires were synchronized with drought conditions based on Ring Width Indexes, Palmer Drought Severity Index (PDSI) and El Niño Southern Oscillation (ENSO). After 1983, we observed a change in fire frequencies attributed to regulated management. Longer fire intervals within the last several decades are likely leading to increased fuel accumulations and could potentially result in more severe fires in the future, threatening the sustainability of these forests. Based on our finding, we recommend management actions (silvicultural or prescribed fire) to reduce fuels and the risk of severe fires, particularly in the face of climatic changes.

1988 ◽  
Vol 30 (1) ◽  
pp. 81-91 ◽  
Author(s):  
James S. Clark

Results of stratigraphic charcoal analysis from thin sections of varved lake sediments have been compared with fire scars on red pine trees in northwestern Minnesota to determine if charcoal data accurately reflect fire regimes. Pollen and opaque-spherule analyses were completed from a short core to confirm that laminations were annual over the last 350 yr. A good correspondence was found between fossil-charcoal and fire-scar data. Individual fires could be identified as specific peaks in the charcoal curves, and times of reduced fire frequency were reflected in the charcoal data. Charcoal was absent during the fire-suppression era from 1920 A.D. to the present. Distinct charcoal maxima from 1864 to 1920 occurred at times of fire within the lake catchment. Fire was less frequent during the 19th century, and charcoal was substantially less abundant. Fire was frequent from 1760 to 1815, and charcoal was abundant continuously. Fire scars and fossil charcoal indicate that fires did not occur during 1730–1750 and 1670–1700. Several fires occurred from 1640 to 1670 and 1700 to 1730. Charcoal counted from pollen preparations in the area generally do not show this changing fire regime. Simulated “sampling” of the thin-section data in a fashion comparable to pollen-slide methods suggests that sampling alone is not sufficient to account for differences between the two methods. Integrating annual charcoal values in this fashion still produced much higher resolution than the pollen-slide method, and the postfire suppression decline of charcoal characteristic of my method (but not of pollen slides) is still evident. Consideration of the differences in size of fragments counted by the two methods is necessary to explain charcoal representation in lake sediments.


2008 ◽  
Vol 17 (1) ◽  
pp. 84 ◽  
Author(s):  
Jennifer Pierce ◽  
Grant Meyer

Alluvial fan deposits are widespread and preserve millennial-length records of fire. We used these records to examine changes in fire regimes over the last 2000 years in Yellowstone National Park mixed-conifer forests and drier central Idaho ponderosa pine forests. In Idaho, frequent, small, fire-related erosional events occurred within the Little Ice Age (~1450–1800 AD), when greater effective moisture probably promoted grass growth and low-severity fires. This regime is consistent with tree-ring records showing generally wetter conditions and frequent fires before European settlement. At higher elevations in Yellowstone, cool conditions limited overall fire activity. Conversely, both Idaho and Yellowstone experienced a peak in fire-related debris flows between ~950 and 1150 AD. During this generally warmer time, severe multidecadal droughts were interspersed with unusually wet intervals that probably increased forest densities, producing stand-replacing fires. Thus, severe fires are clearly within the natural range of variability in Idaho ponderosa pine forests over longer timescales. Historical records indicate that large burn areas in Idaho correspond with drought intervals within the past 100 years and that burn area has increased markedly since ~1985. Recent stand-replacing fires in ponderosa pine forests are likely related to both changes in management and increasing temperatures and drought severity during the 20th century.


2019 ◽  
Vol 29 (2) ◽  
pp. 3-12
Author(s):  
S. Basnet ◽  
N. P. Gaire ◽  
P. K. Chhetri

This study presents the potential of a conifer species (Abies spectabilis D. Don) to reconstruct fire history by using dendro chronological technique along with thedendroclimatic response in Langtang National Park, Central Himalaya of Nepal. For the fire history reconstruction, altogether eight cross-sections samples from fire affected eight trees and another 20 tree-cores from 10 trees with visible fire scars were taken. In the case of dendroclimatic study, 24 healthy cores of A. spectabilis were selected from the 40 cores extracted from 19 trees. The standard dendro chronological methodology was used for sample preparation and analysis. A 199-year long ring-width chronology of A. spectabilis spanning from 1818 to 2016 AD was developed. In spite of visible fire burn in near bark-surface, no potential fire scars are seen in inner parts in the cross-section samples. However, 12 cores showed that three fire burns occurred simultaneously in the forest area in the years 1917−1918, 1969−1970 and 2009−2010, respectively. Tree-ring-based fire event-record is found to be concurrent to the local people's perceptions/experience about the past fire history in the area. Tree growth climate relationship showed sensitive responses to both growing and non-growing season’s temperature and precipitation variability. Summer temperature had positive influence on growth of the species. Precipitation of monsoon and autumn were found to have negative influence on radial growth whereas pre-monsoon precipitation had positive association with tree radial-growth. This preliminary assessment shows that there is a huge potential of tree-ring research for long-term fire history in the region and helps us to better understand the role of fire in the ecology and management in the Himalayan region. The study can also be replicated in other fire-affected areas of the Himalayan region by using fire sensitive species in the sampling.


2020 ◽  
Vol 16 (2) ◽  
pp. 783-798
Author(s):  
Sarir Ahmad ◽  
Liangjun Zhu ◽  
Sumaira Yasmeen ◽  
Yuandong Zhang ◽  
Zongshan Li ◽  
...  

Abstract. The rate of global warming has led to persistent drought. It is considered to be the preliminary factor affecting socioeconomic development under the background of the dynamic forecasting of the water supply and forest ecosystems in West Asia. However, long-term climate records in the semiarid Hindu Kush range are seriously lacking. Therefore, we developed a new tree-ring width chronology of Cedrus deodara spanning the period of 1537–2017. We reconstructed the March–August Palmer Drought Severity Index (PDSI) for the past 424 years, going back to 1593 CE. Our reconstruction featured nine dry periods (1593–1598, 1602–1608, 1631–1645, 1647–1660, 1756–1765, 1785–1800, 1870–1878, 1917–1923, and 1981–1995) and eight wet periods (1663–1675, 1687–1708, 1771–1773, 1806–1814, 1844–1852, 1932–1935, 1965–1969, and 1990–1999). This reconstruction is consistent with other dendroclimatic reconstructions in West Asia, thereby confirming its reliability. The multi-taper method and wavelet analysis revealed drought variability at periodicities of 2.1–2.4, 3.3, 6.0, 16.8, and 34.0–38.0 years. The drought patterns could be linked to the large-scale atmospheric–oceanic variability, such as the El Niño–Southern Oscillation, Atlantic Multidecadal Oscillation, and solar activity. In terms of current climate conditions, our findings have important implications for developing drought-resistant policies in communities on the fringes of the Hindu Kush mountain range in northern Pakistan.


2018 ◽  
Vol 48 (1) ◽  
pp. 101-104 ◽  
Author(s):  
Scott L. Stephens ◽  
Liam Maier ◽  
Lilah Gonen ◽  
Jennifer D. York ◽  
Brandon M. Collins ◽  
...  

Fire scar based studies have provided robust reconstructions of past fire regimes. The season in which a fire occurs can have considerable impacts to ecosystems but inference on seasonality from fire scars is relatively uncertain. This study examined patterns in the phenology of cambium formation and wounding responses in the five common mixed conifer tree species of the Sierra Nevada. The outer bark was shaved on 35 trees and individual locations within the shaved portions were wounded systematically by applying direct heat using a handheld torch. Most of the trees had not commenced annual ring development by the first burning treatment in late May. By the second treatment, scars were identified mostly within the early or middle earlywood, although variation was high compared with other treatment periods. By late October, all scars were recorded at the ring boundary. Although intra-ring scar positions generally followed a logical temporal pattern, there was high tree to tree variation such as Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) burned on 26 June induced scars in the early, mid, and late earlywood depending on the individual tree. This high variation makes it somewhat challenging to precisely assign past fire season to published fire history studies.


1989 ◽  
Vol 19 (11) ◽  
pp. 1451-1457 ◽  
Author(s):  
Mark A. Finney ◽  
Robert E. Martin

Fire occurrence data between the 12th and 20th centuries were obtained from analysis of fire scars on coast redwood (Sequoiasempervirens (D. Don.) Endl.) and bishop pine (Pinusmuricata D. Don.). Mean fire intervals were calculated for settlement and presettlement periods from fire scar samples individually (point data) and from composites of samples aggregated within three approximately 200-ha study areas. Mean fire intervals from point data (20.5 to 29.0 years) were more than three times greater than mean intervals from composite data (6.1 to 9.3 years). Mean fire intervals derived from point data compared well with values previously reported, although substantial bias ascribed to point data suggests that these values for mean fire intervals in redwood forest communities are too large. A period of significantly longer fire intervals during the 17th century was suggested by analysis of fire intervals by century and using a moving average.


2013 ◽  
Vol 22 (2) ◽  
pp. 194 ◽  
Author(s):  
I. A. Mundo ◽  
T. Kitzberger ◽  
F. A. Roig Juñent ◽  
R. Villalba ◽  
M. D. Barrera

Little is known about drivers and trends of historic fire regimes in the Araucaria araucana forests of south-western Argentina. Fire history in these forests was reconstructed by the analysis of 246 fire-scarred partial cross-sections from this fire-resistant tree collected at 10 sites in Neuquén, northern Patagonia. Fire chronologies showed an increase in fire occurrence during the nineteenth century and a sharp decrease since the early twentieth century. The creation of Lanín National Park in 1937, the change in human activities, and the active suppression of wildfires led to a significant increase in mean fire intervals since 1930. In addition to these multidecadal to centennial scale drives of fire frequency, interannual variability in wildfire activity was associated with El Niño–Southern Oscillation. Years of widespread fire are related to negative departures of both Niño 3.4 and Pacific Decadal Oscillation indexes (i.e. La Niña conditions), as well as coincident phases of positive Southern Annular Mode and La Niña events. Temporal variations in the Araucaria fire history in Argentina clearly show the combined effect of human and climate influences on fire regimes. A comparison with previous fire history studies in the Araucaria forests of Chile reveals substantial differences related to differences in human activities on both sides of the Andes and the earlier implementation of protected areas in Argentina.


2008 ◽  
Vol 17 (1) ◽  
pp. 50 ◽  
Author(s):  
Rosemary L. Sherriff ◽  
Thomas T. Veblen

Understanding the interactions of climate variability and wildfire has been a primary objective of recent fire history research. The present study examines the influence of El Niño–Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO) on fire occurrence using fire-scar evidence from 58 sites from the lower ecotone to the upper elevational limits of ponderosa pine (Pinus ponderosa) in northern Colorado. An important finding is that at low v. high elevations within the montane zone, climatic patterns conducive to years of widespread fire are different. Differences in fire–climate relationships are manifested primarily in antecedent year climate. Below ~2100 m, fires are dependent on antecedent moister conditions that favour fine fuel accumulation 2 years before dry fire years. In the upper montane zone, fires are dependent primarily on drought rather than an increase in fine fuels. Throughout the montane zone, fire is strongly linked to variations in moisture availability that in turn is linked to climate influences of ENSO, PDO and AMO. Fire occurrence is greater than expected during the phases of each index associated with drought. Regionally widespread fire years are associated with specific phase combinations of ENSO, PDO and AMO. In particular, the combination of La Niña, negative PDO and positive AMO is highly conducive to widespread fire.


2009 ◽  
Vol 18 (6) ◽  
pp. 631 ◽  
Author(s):  
Aaron C. Greenville ◽  
Chris R. Dickman ◽  
Glenda M. Wardle ◽  
Mike Letnic

Implementing appropriate fire regimes has become an increasingly important objective for biodiversity conservation programs. Here, we used Landsat imagery from 1972 to 2003 to describe the recent fire history and current wildfire regime of the north-eastern Simpson Desert, Australia, within each of the region’s seven main vegetation classes. We then explored the relationship between antecedent rainfall and El Niño–Southern Oscillation with wildfire area. Wildfires were recorded in 11 years between 1972 and 2003, each differing in size. In 1975, the largest wildfire was recorded, burning 55% (4561 km2) of the study region. Smaller fires in the intervening years burnt areas that had mostly escaped the 1975 fire, until 2002, when 31% (2544 km2) of the study region burnt again. Wildfires burnt disproportionally more spinifex (Triodia basedowii) than any other vegetation class. A total of 49% of the study area has burnt once since 1972 and 20% has burnt twice. Less than 1% has burnt three times and 36% has remained unaffected by wildfire since 1972. The mean minimum fire return interval was 26 years. Two years of cumulative rainfall before a fire event, rainfall during the year of a fire event, and the mean Southern Oscillation Index from June to November in the year before a fire event could together be used to successfully predict wildfire area. We use these findings to describe the current fire regime.


The Holocene ◽  
2019 ◽  
Vol 29 (9) ◽  
pp. 1480-1490 ◽  
Author(s):  
Normunds Stivrins ◽  
Tuomas Aakala ◽  
Liisa Ilvonen ◽  
Leena Pasanen ◽  
Timo Kuuluvainen ◽  
...  

Fire is a major disturbance agent in the boreal forest, influencing many current and future ecosystem conditions and services. Surprisingly few studies have attempted to improve the accuracy of fire-event reconstructions even though the estimates of the occurrence of past fires may be biased, influencing the reliability of the models employing those data (e.g. C stock, cycle). This study aimed to demonstrate how three types of fire proxies – fire scars from tree rings, sedimentary charcoal and, for the first time in this context, fungal spores of Neurospora – can be integrated to achieve a better understanding of past fire dynamics. By studying charcoal and Neurospora from sediment cores from forest hollows, and the fire scars from tree rings in their surroundings in the southern Fennoscandian and western Russian boreal forest, we produced composite fire-event data sets and fire-event frequencies, and estimated fire return intervals. Our estimates show that the fire return interval varied between 126 and 237 years during the last 11,000 years. The highest fire frequency during the 18th–19th century can be associated with the anthropogenic influence. Importantly, statistical tests revealed a positive relationship between other fire event indicators and Neurospora occurrence allowing us to pinpoint past fire events at times when the sedimentary charcoal was absent, but Neurospora were abundant. We demonstrated how fire proxies with different temporal resolution can be linked, providing potential improvements in the reliability of fire history reconstructions from multiple proxies.


Sign in / Sign up

Export Citation Format

Share Document