scholarly journals A Combination of Biotic and Abiotic Factors and Diversity Determine Productivity in Natural Deciduous Forests

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1450
Author(s):  
Mahmoud Bayat ◽  
Pete Bettinger ◽  
Sahar Heidari ◽  
Seyedeh Kosar Hamidi ◽  
Abolfazl Jaafari

The relative importance of different biotic and abiotic variables for estimating forest productivity remains unclear for many forest ecosystems around the world, and it is hypothesized that forest productivity could also be estimated by local biodiversity factors. Using a large dataset from 258 forest monitoring permanent sample plots distributed across uneven-aged and mixed forests in northern Iran, we tested the relationship between tree species diversity and forest productivity and examined whether several factors (solar radiation, topographic wetness index, wind velocity, seasonal air temperature, basal area, tree density, basal area in largest trees) had an effect on productivity. In our study, productivity was defined as the mean annual increment of the stem volume of a forest stand in m3 ha−1 year−1. Plot estimates of tree volume growth were based on averaged plot measurements of volume increment over a 9-year growing period. We investigated relationships between productivity and tree species diversity using parametric models and two artificial neural network models, namely the multilayer perceptron (MLP) and radial basis function networks. The artificial neural network (ANN) of the MLP type had good ability in prediction and estimation of productivity in our forests. With respect to species richness, Model 4, which had 10 inputs, 6 hidden layers and 1 output, had the highest R2 (0.94) and the lowest RMSE (0.75) and was selected as the best species richness predictor model. With respect to forest productivity, MLP Model 2 with 10 inputs, 12 hidden layers and 1 output had R2 and RMSE of 0.34 and 0.42, respectively, representing the best model. Both of these used a logistic function. According to a sensitivity analysis, diversity had significant and positive effects on productivity in species-rich broadleaved forests (approximately 31%), and the effects of biotic and abiotic factors were also important (29% and 40%, respectively). The artificial neural network based on the MLP was found to be superior for modeling productivity–diversity relationships.

Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1113 ◽  
Author(s):  
Juhan Park ◽  
Hyun Seok Kim ◽  
Hyun Kook Jo ◽  
II Bin Jung

Research Highlights: Using a long-term dataset on temperate forests in South Korea, we established the interrelationships between tree species and structural diversity and forest productivity and stability, and identified a strong, positive effect of structural diversity, rather than tree species diversity, on productivity and stability. Background and Objectives: Globally, species diversity is positively related with forest productivity. However, temperate forests often show a negative or neutral relationship. In those forests, structural diversity, instead of tree species diversity, could control the forest function. Materials and Methods: This study tested the effects of tree species and structural diversity on temperate forest productivity. The basal area increment and relative changes in stand density were used as proxies for forest productivity and stability, respectively. Results: Here we show that structural diversity, but not species diversity, had a significant, positive effect on productivity, whereas species diversity had a negative effect, despite a positive effect on diversity. Structural diversity also promoted fewer changes in stand density between two periods, whereas species diversity showed no such relation. Structurally diverse forests might use resources efficiently through increased canopy complexity due to canopy plasticity. Conclusions: These results indicate reported species diversity effects could be related to structural diversity. They also highlight the importance of managing structurally diverse forests to improve productivity and stability in stand density, which may promote sustainability of forests.


2014 ◽  
Vol 6 (4) ◽  
pp. 448-453 ◽  
Author(s):  
Dumpa PREMAVANI ◽  
Maradana TARAKESWARA NAIDU ◽  
Malleboyina VENKAIAH

The tree species diversity and population structure were studied in four stands of the tropical forests in the north-central Eastern Ghats, based on tree inventories conducted on four 1-ha plots. In the four independent plots, two 5 x 1000 m transects were established and all trees with ≥ 15 cm girth at breast height were enumerated. The density, frequency, basal area and IVI along with diversity indices viz. Shannon index, species richness, equitability and species dominance were computed to see the variation in tree community. A total of 92 species representing 73 genera under 40 families of angiosperms were recorded. Tree species richness was as low as 34 species per hectare plot in Geddapalli to as high as 48 species in Koruturu. Tree density ranged from 360 stems per hectare in plot Geddapalli to 526 stems in plot Chintapalli and that of total basal area from 16.31 m2 ha-1 in Koruturu to 31.15 m2 ha-1 in Chintapalli. The number of species and stems decreased from the smaller to the largest girth classes. The tree inventories of the study area when compared to those of the other tropical forests showed great differences in density and basal area. This may probably be due to differences in geography and annual rainfall patterns. The information on tree species structure and function can provide baseline information for conservation of the biodiversity.


REINWARDTIA ◽  
2018 ◽  
Vol 17 (2) ◽  
Author(s):  
Asep Sadili ◽  
Kuswata Kartawinata ◽  
Herwasono Soedjito ◽  
Edy Nasriadi Sambas

ADILI, A., KARTAWINATA, K., SOEDJITO, H. & SAMBAS, E. N. 2018. Tree species diversity in a pristine montane forest previously untouched by human activities in Foja Mountains, Papua, Indonesia. Reinwardtia 17(2): 133‒154. ‒‒ A study on structure and composition of the pristine montane forest previously untouched by human activities was conducted at the Foja Mountains in November 2008. We established a one-hectare plot divided into 100 subplots of 10 m × 10 m each. We enumerated all trees with DBH ≥ 10 cm which diameters were measured, heights were estimated and habitats were noted. We recorded 59 species, 42 genera and 27 families, comprising 693 trees with the total basal area (BA) of 41.35 m2/ha. The forest had lower species richness compared to those of lowland forests in Kalimantan, and Sumatra and montane forests in West Java. The Shannon-Wiener’s diversity index was 3.22. Nothofagus rubra (Importance Value, IV=47.89%) and Parinari corymbosa (IV=40.3%) were the dominant species, constituting the basis for designating the forest as the Nothofagus rubra - Parinari corymbosa association. To date, the dominance of N. rubra is unique to the Foja Mountains, as elsewhere in Papua the montane forests were dominated by N. pullei or other species. The species-area curve indicated a minimal area of 5000 m2. On the family level Fagaceae (IV=53.23%), Chrysobalanaceae (IV=40.53%) and Myristicaceae (IV=26.43%) were dominant. Verti-cally the forest consisted of four strata (A–D). In each stratum Nothofagus rubra, Platea latifolia, Parinari corymbosa and Myristica hollrungii were dominant. The diameter class distribution of Nothofagus rubra, Parinari corymbosa and Platea latifolia led us to assume that these species were regenerating well.


Author(s):  
Alebachew Abebe Alemu ◽  
Habtamu Kiros ◽  
Eba Muluneh Sorecha

Clearing of natural ecosystems and land degradation due to unsustainable agricultural practices are becoming threats to the sustainability and productivity of agricultural systems in Burie town administrative, Amhara National Regional State, Ethiopia. The aim of this paper is therefore to assess the fruit tree species diversity in home garden agro-forestry and their role for supporting local people’s livelihoods in Burie town administration. Cultivated plants of 72 home gardens were surveyed and critical information were collected through questioner and focus group discussion from 12 households. Fruit tree species diversity (expressed in species richness and evenness) in home gardens in the study sites was determined using the Shannon-Weiner Index. The study basically considers the human consumption fruit trees species. A total of 18 fruit tree species represented by 9-genera and 7-families were recorded in home garden agro-forestry within the three wealth status (poor, medium, and rich) of the selected respondents commonly. From all wealth categories, the highest Shannon diversity index was recorded in rich and the lowest was in poor class category. Similarly, the highest species evenness was recorded in rich wealth category. However, there was no significant difference among rich and medium wealth categories for species richness. The study also revealed that age, land hold size, education status is the cause for species diversity in addition to the wealth status in the study area. Older respondents had significantly higher species richness and diversity than youngsters. It has been also found that almost all (100%) of the sampled households harvest and use at least four types of home garden products for various purposes. Lacks of management practices were the factors which puts the species diversity in question in the study area.


2019 ◽  
pp. 1-11
Author(s):  
Md. Delwar Hossain ◽  
Md. Ehsanul Haq ◽  
Manna Salwa ◽  
Md. Nazmul Islam Shekh ◽  
Aisha Siddika ◽  
...  

The study was conducted from January to April 2018 to estimate ecosystem carbon stock and tree species diversity at National Botanical Garden, Bangladesh. Transects line method square plots with a size of 20 m × 20 m were used. So altogether there were total eighty-three sample plots in National Botanical Garden. Above ground carbon (AGC) and below ground carbon (BGC) biomass stock was 192.67 and 31.34, respectively and soil organic carbon mean value of 27.52 Mg ha-1, 21.45 Mg ha-1 and 16.23 Mg ha-1, respectively for 0-10 cm depth, 10-20 cm and 20-30 cm depth. The average number of tree species per hectare was 128 with a mean value of each plot 3.00 to 9.00 species. The average number of trees in National Botanical Garden (233 tree ha-1), basal area (21.45 m2 ha-1) and mean DBH (39.86 cm). Tree diversity range from 0.25 to 1.86 and the mean value of (0.93 ± 0.14) in National Botanical Garden. A relationship such as biomass carbon with the basal area, mean DBH, stem density and tree diversity were estimated. Among these, the relationship between basal area and biomass carbon showed positive significant correlation. Therefore, the results of the study confirmed that the selected botanical garden can serve as a valuable ecological tool in terms of carbon sequestration, diverse tree species and storage of soil organic carbon.


2021 ◽  
Author(s):  
Van Vien Pham ◽  
Christian Ammer ◽  
Peter Annighöfer ◽  
Steffi Heinrichs

Abstract Background: Forest regeneration is decisive for future forest development and therefore of major concern to forest ecologists. The ability of overstory tree species to regenerate successfully is important for the preservation of tree species diversity and its associated flora and fauna. This study investigated forest regeneration dynamics in the Cat Ba National Park, a biodiversity hotpot in Vietnam. Data was collected from 90 sample plots and 450 sub-sample plots in the regional limestone forests. We compared species richness between the regeneration and overstory tree layers and examined the effect of environmental factors on the occurrence of regeneration. We developed five ratios to relate overstory and regeneration richness and diversity. Results: We found 97 tree species in the regeneration layer compared to 136 species in the overstory layer. Average regeneration density was 3,764 ± 1,601 per ha. Around 70% of the overstory tree species generated offspring. Of the tree species threatened according to The International Union for Conservation of Nature’s Red List of Threatened Species, only 36% were found in the regeneration layer. A principal component analysis provided evidence that the regeneration of tree species was linked to terrain factors (percentage of rock surface, slope) and soil properties (Cation exchange capacity, pH, humus content, soil moisture, soil depth). Contrary to our expectations, the prevailing light conditions (total site factor, gap fraction, openness, indirect site factor, direct site factor) had no influence on regeneration density and composition, probably due to the small gradient in light availability. Conclusion: We conclude that tree species richness in Cat Ba National Park appears to be declining at present. We suggest similar investigations in other biodiversity hotspots to learn whether the observed trend is a global phenomenon. In any case, a conservation strategy for the threatened tree species in the Cat Ba National Park needs to be developed if tree species diversity is to be maintained.


1970 ◽  
Vol 18 (1) ◽  
pp. 3-10 ◽  
Author(s):  
Deepak K Kharal ◽  
Bishwa N Oli

Biodiversity is an important consideration in maintaining natural environmental balance in a particular habitat. This becomes particularly important in areas, where due to the encroachment of natural forests, biodiversity is depleting causing a potential loss in the natural habitat. In such a situation, biodiversity in the farmland becomes an important consideration. Biodiversity is measured and analyzed using various indices. In this study, we present the result of our study through a field work in a rural village in Nepal. The study was conducted through direct field observation and survey of sampled households. The status of tree biodiversity using species biodiversity index and species richness index for the case study are presented. The study has also identified the relationship between the tree species diversity and major socioeconomic factors. Our analysis shows that tree species biodiversity in the rural farmland of study area are lower in comparison to the similar areas of countries like India, Bangladesh and Sri Lanka. The lower biodiversity status is mainly due to the wide distribution of two dominating tree species of Dalbergia sissoo and Melia azederach. Similarly, Tree species biodiversity in the farm land has been found affected by the socioeconomic situation of the area. Further study is suggested by involving more socioeconomic factors and covering a large sample size and time of study. Key words: Farmland, Forest, Homegarden, Nepal, Species Diversity, Species Richness, Trees. doi: 10.3126/banko.v18i1.2160 Banko Janakari, Vol. 18, No. 1, 3-10


2007 ◽  
Vol 07 (1) ◽  
pp. 21-35
Author(s):  
Anatolio Polinar ◽  
◽  
Uwe Muuss ◽  

The study was conducted to determine species diversity and similarity within a two-hectare secondary forest of the Visayas State University forest reservation. The diversity value of trees ranged from 3.09 - 4.53. Results of the study indicate that the middle layer of both blocks was observed as the most luxuriant among all layers. A total of 173 species in 113 genera and 51 families; and 92 species, in 69 genera and 37 families were recorded in the middle layer of Block 1 and Block 2, respectively. The genus Ficus of the family Moraceae was identified as the most highly represented in terms of species in both blocks. Moreover, results of the study show that species richness increased within an increasing area but with a decreasing number of species. As to species similarities, it was discovered that 28% of the identified specieds are common to both blocks.


2020 ◽  
Author(s):  
Tarit Kumar Baul ◽  
Avinanda Chakraborty ◽  
Rajasree Nandi ◽  
Mohammed Mohiuddin ◽  
Antti Kilpeläinen ◽  
...  

Abstract BackgroundThis study aimed to estimate the carbon (C) stocks in homestead forest ecosystems (trees, litterfall, and soil) of Maheshkhali Island in Bangladesh and how tree species diversity and stand structural variation affected these C stocks. We randomly surveyed a total of 239 homestead forests proportionately allocating in hillside (67), beachside (69), and inland (103) in 2019 for measuring woody plants and sampling litterfall and C in soil at 0-30 cm depth. Tree (above- and below-ground) biomass was estimated by using pan-tropical allometric equations, and carbon of litterfall and soil were analyzed in a laboratory. ResultsWe found a total of 52 tree species, of which, 41, 42, and 48 species were in the hillside, beachside, and inland, respectively, corresponding to the individuals of 840, 540, and 1504 sampled. According to the results, species diversity, richness, stand density, basal area (BA), and tree diameter at breast height (DBH) and height were significantly (p ≤ 0.05) greater in the hillside and inland homestead forests, compared to the beachside. Most abundant species, for example, Mangifera indica, Samanea saman, and Artocarpus heterophyllus in the inland and hillside homestead forests stored most C in biomass, compared to the beachside forest. Tree biomass C stocks were 48-67% greater in the inland and hillside than on beachside forests due to significantly (p ≤ 0.05) greater stand density, BA, and DBH. The overall C stock of litterfall was 0.1% of the total biomass carbon. C stock in soil surface was greatest in the hillside homestead forests due to the greatest litterfall. The total soil C stock was also affected by tree species, stand density and species richness, and their interaction with soil properties. Total soil C stocks across the depths were greatest (51 Mg ha-1) in the inland homestead forests, with the greatest stand density and species richness. ConclusionsHomestead forest ecosystems across the area stored total 96 Mg C ha-1, which thus can contribute to climate change mitigation while generating C credit for small-scale homestead forests owners as well as conserving biodiversity in Bangladesh and countries alike.


Sign in / Sign up

Export Citation Format

Share Document