scholarly journals Preservation of Human Gut Microbiota Inoculums for In Vitro Fermentations Studies

Fermentation ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 14
Author(s):  
Nelson Mota de Carvalho ◽  
Diana Luazi Oliveira ◽  
Mayra Anton Dib Saleh ◽  
Manuela Pintado ◽  
Ana Raquel Madureira

The use of fecal inoculums for in vitro fermentation models requires a viable gut microbiota, capable of fermenting the unabsorbed nutrients. Fresh samples from human donors are used; however, the availability of fresh fecal inoculum and its inherent variability is often a problem. This study aimed to optimize a method of preserving pooled human fecal samples for in vitro fermentation studies. Different conditions and times of storage at −20 °C were tested. In vitro fermentation experiments were carried out for both fresh and frozen inoculums, and the metabolic profile compared. In comparison with the fresh, the inoculum frozen in a PBS and 30% glycerol solution, had a significantly lower (p < 0.05) bacterial count (<1 log CFU/mL). However, no significant differences (p < 0.05) were found between the metabolic profiles after 48 h. Hence, a PBS and 30% glycerol solution can be used to maintain the gut microbiota viability during storage at −20 °C for at least 3 months, without interfering with the normal course of colonic fermentation.

2021 ◽  
Author(s):  
Shiyi Lu ◽  
Deirdre Mikkelsen ◽  
Hong Yao ◽  
Barbara Williams ◽  
Bernadine Flanagan ◽  
...  

Plant cell walls as well as their component polysaccharides in foods can be utilized to alter and maintain a beneficial human gut microbiota, but it is not known whether the...


LWT ◽  
2020 ◽  
pp. 110524
Author(s):  
Yuzhu Zhu ◽  
Jia-Min Zhou ◽  
Wei Liu ◽  
Xionge Pi ◽  
Qingqing Zhou ◽  
...  

Nutrients ◽  
2017 ◽  
Vol 9 (11) ◽  
pp. 1237 ◽  
Author(s):  
Tung Pham ◽  
Keat Teoh ◽  
Brett Savary ◽  
Ming-Hsuan Chen ◽  
Anna McClung ◽  
...  

Anaerobe ◽  
2016 ◽  
Vol 39 ◽  
pp. 19-25 ◽  
Author(s):  
Miaomiao Li ◽  
Guangsheng Li ◽  
Qingsen Shang ◽  
Xiuxia Chen ◽  
Wei Liu ◽  
...  

2019 ◽  
Vol 68 (1) ◽  
pp. 106-116 ◽  
Author(s):  
Joaquín Navarro del Hierro ◽  
Carolina Cueva ◽  
Alba Tamargo ◽  
Estefanía Núñez-Gómez ◽  
M. Victoria Moreno-Arribas ◽  
...  

2019 ◽  
Vol 59 ◽  
pp. 80-91 ◽  
Author(s):  
Yujiao Sun ◽  
Xiangyi Cui ◽  
Mengmeng Duan ◽  
Chunqing Ai ◽  
Shuang Song ◽  
...  

Author(s):  
Chenxi Nie ◽  
Xin Yan ◽  
Xiaoqing Xie ◽  
Ziqi Zhang ◽  
Jiang Zhu ◽  
...  

Abstract Background The influence of β-glucan on the human gut microbiota is closely related to the physicochemical structure of β-glucan. We purified a homogeneous water-soluble polysaccharide from Tibetan hull-less barley 25 and studied its structure and the in vitro fermentation profile. Results Analysis by gas chromatography (GC), Fourier-transformed infrared (FT-IR), nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), and atomic force micrograph (AFM) helped determine the hull-less barley polysaccharide to be a β-glucan (molecular weight: 3.45 × 104 Da), which was further characterized as mixed-linkage (1 → 3)(1 → 4)-linked β-d-glucans. SEM images demonstrated an intricate web structure of the hull-less barley polysaccharide, while the AFM images revealed the presence of small spherical particles in its structure. In addition, the microbiota composition of the hull-less barley polysaccharide group was found to be altered, wherein the abundance of Pantoea, Megamonas, Bifidobacterium, and Prevotella-9 were increased. On the other hand, in vitro fermentation revealed that hull-less barley polysaccharide significantly decreased the pH value and increased the production of acetate, propionate, and butyrate. Conclusions Hull-less barley polysaccharide is a type of dietary fiber, and its analysis suggested that it may serve as a prebiotic food supplement for the regulation of the gut microbiota.


Sign in / Sign up

Export Citation Format

Share Document