scholarly journals In-Situ Vacuum Assisted Gas Stripping Recovery System for Ethanol Removal from a Column Bioreactor

Fibers ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 88
Author(s):  
Martina Andlar ◽  
Damir Oros ◽  
Tonči Rezić ◽  
Roland Ludwig ◽  
Božidar Šantek

A three-step process consisting of biomass hydrolysis, fermentation and in-situ gas stripping by a vacuum assisted recovery system, was optimized to increase the ethanol production from sugar beet pulp. The process combines the advantages of stripping and vacuum separation and enhances the fermentation productivity through in-situ ethanol removal. Using the design of experiment and response surface methodology, the effect of major factors in the process, such as pressure, recycling ratio and solids concentration, was tested to efficiently remove ethanol after the combined hydrolysis and fermentation step. Statistical analysis indicates that a decreased pressure rate and an increased liquid phase recycling ratio enhance the productivity and the yield of the strip-vacuum fermentation process. The results also highlight further possibilities of this process to improve integrated bioethanol production processes. According to the statistical analysis, ethanol production is strongly influenced by recycling ratio and vacuum ratio. Mathematical models that were established for description of investigated processes can be used for the optimization of the ethanol production.

2016 ◽  
Vol 110 ◽  
pp. 152-161 ◽  
Author(s):  
Gustavo Henrique Santos F. Ponce ◽  
João Moreira Neto ◽  
Sérgio Santos De Jesus ◽  
Júlio César de Carvalho Miranda ◽  
Rubens Maciel Filho ◽  
...  

2012 ◽  
Vol 557-559 ◽  
pp. 2151-2154
Author(s):  
Zhen Liu ◽  
Qing Hui Chang

The conventional ethanol fermentaion is a typical inhibitory process, leading to low productivity and yield. A new ethanol fermentation process coupled with gas stripping and vacuum flash, named as strip-flash fermentation, is proposed. The process is provided with the advantages of both stripping fermentation and flash fermentation, and improves the ethanol productivity by increasing the in-situ ethanol removal. And a model of flash-strip fermentation process was established. The theoretically analyses indicate that increasing gas flux and liquid phase recycling ratio can help to enhance productivity and yield of strip-flash fermentation process, and comparison to striping fermentation or flash fermentation, flash-strip fermentation has shown a better productivity. The results has also shown the possibilities of further application and optimization of this process.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 646
Author(s):  
Rafael André Ávila ◽  
Priscila Mulattieri Suarez Orozco ◽  
Mauro Michelena Andrade ◽  
Osmar Olinto Möller

The assessment of suspended-solids dynamics is crucial for the effective monitoring of estuarine environments. As the recurring in-situ sampling is usually problematic, the calibration of the backscattering from acoustic Doppler profilers has shown to be a reliable technique to estimate the suspended-solids concentration (SSC) in estuaries and rivers. In this study, we obtained a linear model that provides SSC estimates for the estuarine channel of Patos Lagoon by calibrating turbidity and acoustic data with in-situ concentration samples. The model output was analyzed in terms of its relationship with estuarine hydrodynamics and temporal variability. In this estuary, the supply of suspended solids is known to be due the runoff from its main tributaries, but also through the exchanges between the estuary and the coastal ocean. Both sources provide sediments and organic solids which affect water quality, geomorphology, and harbor operations. Results show that SSC is strongly linked to estuarine hydrodynamics, where concentrations increase with streamflow. During outflow periods, higher concentrations are associated with river runoff, whereas with inflow conditions they are induced by southern and southwesterly winds. However, relationship between SSC and streamflow is asymmetrical, meaning that the largest concentrations are majorly linked to outflow currents and downstream transport.


Author(s):  
Ercha Aa ◽  
Shasha Zou ◽  
Philip J. Erickson ◽  
Shun‐Rong Zhang ◽  
Siqing Liu

2006 ◽  
Vol 72 (8) ◽  
pp. 5311-5317 ◽  
Author(s):  
Kengo Kubota ◽  
Akiyoshi Ohashi ◽  
Hiroyuki Imachi ◽  
Hideki Harada

ABSTRACT Low signal intensity due to poor probe hybridization efficiency is one of the major drawbacks of rRNA-targeted in situ hybridization. There are two major factors affecting the hybridization efficiency: probe accessibility and affinity to the targeted rRNA molecules. In this study, we demonstrate remarkable improvement in in situ hybridization efficiency by applying locked-nucleic-acid (LNA)-incorporated oligodeoxynucleotide probes (LNA/DNA probes) without compromising specificity. Fluorescently labeled LNA/DNA probes with two to four LNA substitutions exhibited strong fluorescence intensities equal to or greater than that of probe Eub338, although these probes did not show bright signals when they were synthesized as DNA probes; for example, the fluorescence intensity of probe Eco468 increased by 22-fold after three LNA bases were substituted for DNA bases. Dissociation profiles of the probes revealed that the dissociation temperature was directly related to the number of LNA substitutions and the fluorescence intensity. These results suggest that the introduction of LNA residues in DNA probes will be a useful approach for effectively enhancing probe hybridization efficiency.


2005 ◽  
Vol 42 (5) ◽  
pp. 1377-1390 ◽  
Author(s):  
Matthew D Alexander ◽  
Kerry TB MacQuarrie

Accurate measurements of in situ groundwater temperature are important in many groundwater investigations. Temperature is often measured in the subsurface using an access tube in the form of a piezometer or monitoring well. The impact of standpipe materials on the conduction of heat into the subsurface has not previously been examined. This paper reports on the results of a laboratory experiment and a field experiment designed to determine if different standpipe materials or monitoring instrument configurations preferentially conduct heat into the shallow sub surface. Simulations with a numerical model were also conducted for comparison to the laboratory results. Statistical analysis of the laboratory results demonstrates that common standpipe materials, such as steel and polyvinylchloride (PVC), do not affect temperature in the subsurface. Simulations with a finite element flow and heat transport model also confirm that the presence of access tube materials does not affect shallow groundwater temperature measurements. Field results show that different instrument configurations, such as piezometers and water and air filled and sealed well points, do not affect subsurface temperature measurements.Key words: groundwater temperature, temperature measurement, conduction, piezometers, piezometer standpipes, thermal modelling.


2013 ◽  
Vol 135 ◽  
pp. 396-402 ◽  
Author(s):  
Chuang Xue ◽  
Jingbo Zhao ◽  
Fangfang Liu ◽  
Congcong Lu ◽  
Shang-Tian Yang ◽  
...  

1986 ◽  
Vol 250 (5) ◽  
pp. C663-C675 ◽  
Author(s):  
D. P. Jones

Endogenous enzymes with different subcellular localizations provide in situ probes to study O2 and ATP concentration at various sites within cells. Results from this approach indicate that substantial intracellular concentration gradients occur under some O2- and ATP-limited conditions. These studies, along with electron microscopic analyses and mathematical modeling, indicate that clustering and distribution of mitochondria are major factors in determining the magnitude and location of the concentration gradients. The mitochondria appear to be clustered in sites of high ATP demand to maximize ATP supply under conditions of limited production. The size of such clusters is limited by the magnitude of the O2 gradient needed to provide adequate O2 concentrations for mitochondrial function within the clusters. Thus microheterogeneity of metabolite concentrations can occur in cells without membranal compartmentation and may be important in determining the rates of various high-flux processes.


2017 ◽  
Vol 4 (2) ◽  
Author(s):  
Dr. Jitendra Mugali ◽  
Dr. Nitin Pattanashetty ◽  
Dr. S S Chate ◽  
Dr. N M Patil ◽  
Dr. Sandeep Patil ◽  
...  

Objectives: 1.To studies the categorical prevalence of temperament of scholastically backward children. 2. To study the associated Psychiatric problems with type of temperament in scholastically backward children. Material and Methods: Total of 1480 children studying in 3 CBSE schools, aged between 6 and 12 years were screened. 312 children were found to scholastically backward. After simple randomization and further screening procedure 115 children were included in the study. Each child was assessed by interviewing with MINI-KID Questionnaire, temperament assessment scale, I Q assessment by using Reven’s coloured progressive matrices, CBCL and final diagnosis done by ICD DCR criteria.  Statistical analysis was done using Epi Info 7 software. Results: The prevalence of scholastically backwardness was found to be 21.08%. The distribution of scholastically backward children belongs to falling types of temperament found to be easy temperament-41.74 %, difficult temperament 13.91 % and slow to warm temperament 44.35% respectively. Majority of scholastically backward children belongs to slow to warm type of temperament. All the difficult temperament children were associated with one or the other psychiatric problems. 18.75% of children with easy temperament and 74.51% of children with slow to warm are associated with psychiatric problems. Conclusion: Temperament of a child is one of the major factors for scholastic performance. Some children do poor performance in academics, school refusal and school drop outs. Prevalence of difficult temperament in children had associated with 100% psychiatric disorder. Difficult temperament children handling in home and in school is very difficult, so early detection of associated psychiatric problems and early intervention will surely help to handle the further consequences.


Sign in / Sign up

Export Citation Format

Share Document