scholarly journals Optical Characterisations of Bi-Phosphosilicate Fiber for O Band Amplification

Fibers ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 76
Author(s):  
Amilia Mansoor ◽  
Nasr Y. M. Omar ◽  
Katrina D. Dambul ◽  
Hairul Azhar Abdul-Rashid ◽  
Zulfadzli Yusoff

We report on the optical properties of Bi-doped phosphosilicate fiber. The fiber with a core and a clad diameter of 7.75 µm and 125 µm, respectively, is fabricated in-house using the modified chemical vapor deposition (MCVD) with in-situ solution doping technique. The spectroscopic properties of the fabricated fiber are characterized in terms of absorption, emission and lifetime. The lifetime decay is measured to be 800 µs; indicating a good potential optical amplification in the range of 1300 to 1500 nm. A Bismuth-doped fiber amplifier (BDFA) operating within the O-band region was successfully demonstrated. At 1340 nm, a 14.8 dB gain is achieved with 300 mW pumping power.

Author(s):  
Andrew S. Webb ◽  
Alexander J. Boyland ◽  
Robert J. Standish ◽  
Dejiao Lin ◽  
Shaif-Ul Alam ◽  
...  

2016 ◽  
Vol 702 ◽  
pp. 91-95
Author(s):  
Edson Haruhico Sekiya ◽  
Kazuya Saito

Emission spectra of Sn, Sb, Pb and Bi doped silica glasses co-doped with Al and P prepared by modified chemical vapor-phase deposition (MCVD) using solution doping technique are presented. Bi doped silica glasses present emission/excitation (Em/Ex) bands around 470/(330, 220nm) 600/(470, 350, 270nm), 730 and 830/(820, 420, 380, 250nm), with the intensity ratio of these bands depends on the composition, indicating that different emission sources (valence states or defects) are present together. The Em/Ex of Sb doped silica glasses also depend on composition, and are similar of Bi doped silica glasses. The lifetime at 830 and 1400 in Bi or Sb doped silica glasses are similar and around 60 and 850μs, respectively. The lifetime around 600nm was 3.2 and 11μs, respectively to Bi and Sb doped silica glasses. The Sn doped silica glass present Em/Ex bands around 305/265nm, 400/(270, 340nm) and 430/280nm. The Pb doped silica glass present Em/Ex around 370/290nm and 540/320nm. No significant change in the emission bands in the visible range are observed when the Sn or Pb doped silica glass are co-doped with Al or P. The present results of Em/Ex suggest that Bi and Sb can be candidate for fiber lasing in visible range (around 600nm) using the available LD pumping (ex: 405nm). Despite Sn and Pb doping shows strong emission around 400nm, unfortunately until now there is no LD that can be used as pumping source.


Author(s):  
J. Drucker ◽  
R. Sharma ◽  
J. Kouvetakis ◽  
K.H.J. Weiss

Patterning of metals is a key element in the fabrication of integrated microelectronics. For circuit repair and engineering changes constructive lithography, writing techniques, based on electron, ion or photon beam-induced decomposition of precursor molecule and its deposition on top of a structure have gained wide acceptance Recently, scanning probe techniques have been used for line drawing and wire growth of W on a silicon substrate for quantum effect devices. The kinetics of electron beam induced W deposition from WF6 gas has been studied by adsorbing the gas on SiO2 surface and measuring the growth in a TEM for various exposure times. Our environmental cell allows us to control not only electron exposure time but also the gas pressure flow and the temperature. We have studied the growth kinetics of Au Chemical vapor deposition (CVD), in situ, at different temperatures with/without the electron beam on highly clean Si surfaces in an environmental cell fitted inside a TEM column.


Author(s):  
Meric Firat ◽  
Hariharsudan Sivaramakrishnan Radhakrishnan ◽  
Maria Recaman Payo ◽  
Filip Duerinckx ◽  
Rajiv Sharma ◽  
...  

Author(s):  
Liang Fang ◽  
Yanping Xie ◽  
Peiyin Guo ◽  
Jingpei Zhu ◽  
Shuhui Xiao ◽  
...  

Vertical NiPS3 nanosheets in situ grown on conducting nickel foam were fabricated by a facile one-step chemical vapor transport method and used as an efficient bifunctional catalyst for overall water splitting.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 533 ◽  
Author(s):  
Josué A. Torres-Ávalos ◽  
Leonardo R. Cajero-Zul ◽  
Milton Vázquez-Lepe ◽  
Fernando A. López-Dellamary ◽  
Antonio Martínez-Richa ◽  
...  

Design of a smart drug delivery system is a topic of current interest. Under this perspective, polymer nanocomposites (PNs) of butyl acrylate (BA), methacrylic acid (MAA), and functionalized carbon nanotubes (CNTsf) were synthesized by in situ emulsion polymerization (IEP). Carbon nanotubes were synthesized by chemical vapor deposition (CVD) and purified with steam. Purified CNTs were analyzed by FE-SEM and HR-TEM. CNTsf contain acyl chloride groups attached to their surface. Purified and functionalized CNTs were studied by FT-IR and Raman spectroscopies. The synthesized nanocomposites were studied by XPS, 13C-NMR, and DSC. Anhydride groups link CNTsf to MAA–BA polymeric chains. The potentiality of the prepared nanocomposites, and of their pure polymer matrices to deliver hydrocortisone, was evaluated in vitro by UV–VIS spectroscopy. The relationship between the chemical structure of the synthesized nanocomposites, or their pure polymeric matrices, and their ability to release hydrocortisone was studied by FT-IR spectroscopy. The hydrocortisone release profile of some of the studied nanocomposites is driven by a change in the inter-associated to self-associated hydrogen bonds balance. The CNTsf used to prepare the studied nanocomposites act as hydrocortisone reservoirs.


1994 ◽  
Vol 345 ◽  
Author(s):  
T. Kretz ◽  
D. Pribat ◽  
P. Legagneux ◽  
F. Plais ◽  
O. Huet ◽  
...  

AbstractHigh purity amorphous silicon layers were obtained by ultrahigh vacuum (millitorr range) chemical vapor deposition (UHVCVD) from disilane gas. The crystalline fraction of the films was monitored by in situ electrical conductance measurements performed during isothermal annealings. The experimental conductance curves were fitted with an analytical expression, from which the characteristic crystallisation time, tc, was extracted. Using the activation energy for the growth rate extracted from our previous work, we were able to determine the activation energy for the nucleation rate for the analysed-films. For the films including small crystallites we have obtained En ∼ 2.8 eV, compared to En ∼ 3.7 eV for the completely amorphous ones.


1989 ◽  
Vol 168 ◽  
Author(s):  
Max Klein ◽  
Bernard Gallois

AbstractThe early growth of chemically vapor deposited TiN and TiC coatings on pyrolytic graphite was studied in the kinetic- and mass transport-controlled regimes. While steady-state growth of these coatings results in columnar grains, such morphologies do not originate at the substrate/coating interface. Rather, TiC deposition begins on the substrate as fine grains less than 100 nm in diameter. Early TiN growth occurs in layers of 50 nm grains. In both cases, early fine-grained growth occurs at a lower rate than the linear, steady rate observed for columnar growth. A laser scattering technique has been developed as a tool for characterizing early growth through surface roughness. This noncontact method can be used as an in-situ diagnostic to detect changes in the surface of the growing deposit.


Sign in / Sign up

Export Citation Format

Share Document