scholarly journals BIM-Based Co-Simulation of Fire and Occupants’ Behavior for Safe Construction Rehabilitation Planning

Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 67
Author(s):  
Seyedeh Tannaz Shams Abadi ◽  
Nojan Moniri Tokmehdash ◽  
Abdelhady Hosny ◽  
Mazdak Nik-Bakht

Construction renovation projects increase the risk of structural fire, mostly due to the accumulation of combustible construction materials and waste. In particular, when the building remains operational during such projects, the redistribution of occupants and interruptions with access corridors/exit egress can exponentially increase the risk for the occupants. Most construction projects are, however, planned and scheduled merely based on the time and budget criteria. While safety is considered paramount and is meant to be applied as a hard constraint in the scheduling stage, in practice, safe evacuation considerations are reduced to rules of thumb and general code guidelines. In this paper, we propose simulation as a tool to introduce safety under structural fire, as a decision criterion, to be mixed with time and budget for selecting the best construction schedule alternative. We have used the BIM (building information model) to extract the building’s spatial and physical properties; and have applied co-simulation of fire, through computational fluid dynamics (CFD), and occupants’ evacuation behavior, through agent-based modeling (ABM) to estimate the average and maximum required safe egress time for various construction sequencing alternatives. This parameter is then used as a third decision criterion, combined with the project’s cost and duration, to evaluate construction schedule alternatives. We applied our method to a three-floor fire zone in a high-rise educational building in Montreal, and our results show that considering the fire safety criterion can make a difference in the final construction schedule. Our proposed method suggests an additional metric for evaluating renovation projects’ construction plans, particularly in congested buildings which need to remain fully or partially operational during the renovation. Thus, this method can be employed by safety officers and facility managers, as well as construction project planners to guide accounting for fire incidents while planning for these types of projects.

2020 ◽  
Vol 14 ◽  
Author(s):  
Amin K. Akhnoukh

: Contour crafting application has been widely used in different industrial, pharmaceutical, medical, and aviation application for more than three decades. Recently, mega-sized 3-D printers were developed, with sufficient capability to print full scale construction projects, including walls, homes, bridges, and multi-story buildings. Successful 3-D printing of projects is accomplished by additive manufacturing (AM) process through the placement of successive layers of construction materials using robotic arms (3-D printers). This layered construction, known as contour crafting, is controlled by computer modelling software. This paper presents the history of contour crafting development, its current application in construction, the advantages of contour crafting applications in construction, and the main impediments to the wide spread of contour crafting in the local construction market. In addition, this paper highlights the current research efforts made to integrate building information modeling (BIM) in contour crafting construction. Based on the recent research findings, contour crafting application in construction improves job site productivity and project sustainability as a result of reduced material waste in construction sites. Finally, the automated construction through the application of contour crafting technique results in improved job site safety and increased overall quality of construction projects due to the increased automation in construction.


Recycling ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Kefei Zhang ◽  
Jing Jia

The recovery rate of construction materials is only 5% in China, which will lead to environmental and economic problems. Researchers from other countries have recognized the potential of building information modelling (BIM) in optimizing construction material recycling. However, previous research did not take the whole life cycle into consideration and was not practical enough. In this research, a questionnaire was conducted to find out how construction waste is disposed of in construction projects. Then, the existing research results were analyzed to find out how to apply BIM in the whole-life-cycle disposal of construction materials. According to the results of the questionnaire, landfill is the most common way to dispose of construction materials in China; besides this, almost no construction projects use BIM in material recycling. Hence, a BIM-based dynamic recycling model is proposed. Information management of materials, demolition planning, and BIM were all combined in this model for the purpose of optimizing the application of BIM, thus developing a waste material disposal system to achieve higher recovery rates and sustainability. More positive measures should be taken to deal with the problem of construction waste; if not, more environmental and economic problems will follow.


The variants of the division of the life cycle of a construction object at the stages adopted in the territory of the Russian Federation, as well as in other countries are considered. Particular attention is paid to the exemplary work plan – "RIBA plan of work", used in England. A feature of this document is its applicability in the information modeling of construction projects (Building information Modeling – BIM). The article presents a structural and logical scheme of the life cycle of a building object and a list of works that are performed using information modeling technology at various stages of the life cycle of the building. The place of information models in the process of determining the service life of the building is shown. On the basis of the considered sources of information, promising directions for the development of the life cycle management system of the construction object (Life Cycle Management) and the development of the regulatory framework in order to improve the use of information modeling in construction are given.


Land ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 17
Author(s):  
Wojciech Bal ◽  
Magdalena Czalczynska-Podolska

The coastline of Western Pomerania has natural and cultural assets that have promoted the development of tourism, but also require additional measures to ensure the traditional features and characteristics are protected. This is to ensure that new developments conform to a more uniform set of spatial structures which are in line with the original culture. Today, seaside resorts are characterized by a rapid increase in development with a clear trend towards non-physiognomic architectural forms which continually expand and encroach on land closer to the coastline. This results in a blurring of the original concepts that characterized the founding seaside resort. This study evaluates 11 development projects (including a range of hotels, luxury residential buildings and hotel suites) built in 2009–2020 in the coastal area of Western Pomerania. An assessment of architecture-and-landscape integration for each development project was made, using four groups of evaluation criteria: aesthetic, socio-cultural, functional and locational factors. The study methodology included a historical and interpretative study (iconology, iconography, historiography) and an examination of architecture-and-landscape integration using a pre-prepared evaluation form. Each criterion was first assessed using both field surveys and desk research (including the analysis of construction plans and developer materials), and then compared with the original, traditional qualities of the town. This study demonstrates that it is possible to clearly identify the potential negative impact of tourism development on the cultural landscape of seaside resorts, and provides recommendations for future shaping, management and conservation of the landscape.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
S. Hemalattha ◽  
R. Vidjeapriya

PurposeThis study aims to develop a framework for optimizing the spatial requirements of the equipment in a construction site using a geographic information system (GIS).Design/methodology/approachAn ongoing construction project, an existing thermal powerplant in India, is considered to be the case study, and the corresponding construction activities were scheduled. The equipment spaces were defined for the scheduled activities in building information modelling (BIM), which was further imported to GIS to define the topology rules, validate and optimize the spatial requirements. The BIM simulates the indoor environment, which includes the actual structure being constructed, and the GIS helps in modelling the outdoor environment, which includes the existing structures, temporary facilitates, topography of the site, etc.; thus, this study incorporates the knowledge of BIM in a geospatial environment to obtain optimized equipment spaces for various activities.FindingsSpace in construction projects is to be considered as a resource as well as a constraint, which is to be modelled and planned according to the requirements. The integration of BIM and GIS for equipment space planning will enable precise identification of the errors in the equipment spaces defined and also result in fewer errors as possible. The integration has also eased the process of assigning the topology rules and validating the same, which otherwise is a tedious process.Originality/valueThe workspace for each activity will include the space of the equipment. But, in most of the previous works of workspace planning, only the labour space is considered, and the conflicts and congestions occurring due to the equipment were neglected. The planning of equipment spaces cannot be done based only on the indoor environment; it has to be carried out by considering the surroundings and topography of the site, which have not been researched extensively despite its importance.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Qingfeng Meng ◽  
Jingxian Chen ◽  
Kun Qian

This paper focuses on the complexity characteristics of a stakeholder’s revenue sharing for time compression in construction projects, such as adopting a life cycle perspective, the preferences of stakeholders, and the adaptability behaviors in the negotiation process. We build an agent-based model on revenue sharing negotiation. Considering that the agents who are in a weak position not only care about their own benefits but also compare their benefits to others, we design an experimental scenario where a contractor has fairness preference based on China’s reality. According to different sympathy and envy coefficients, we can divide the inequity aversion preference into three typical types, and we research how a contractor’s different types of inequity aversion preferences impact revenue sharing coefficient of agreements, results of successful negotiations, and efficiency in negotiations. Results are as follows: it is advantageous for a contractor to maintain a modest inequity aversion for their own earnings and the degree of sympathy preference in inequity aversion has an important impact on the time to reach consensus while the degree of jealousy preference has no obvious effect. If contractors’ sympathy preference is maintained within a moderate range, it will achieve a higher success rate of negotiations in the negotiation process; the success rate of negotiation is affected largely by the agents’ sympathy preference, though it is also influenced by the jealousy preference, but it is not very sensitive.


Sign in / Sign up

Export Citation Format

Share Document