scholarly journals Design of Chitosan and Alginate Emulsion-Based Formulations for the Production of Monolayer Crosslinked Edible Films and Coatings

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1654
Author(s):  
Tiago M. Vieira ◽  
Margarida Moldão-Martins ◽  
Vítor D. Alves

This study aimed to develop edible monolayer emulsion-based barriers with polysaccharides as film-forming components (chitosan and sodium alginate), soy lecithin as a surfactant and olive oil as a hydrophobic barrier. Monolayer barriers in the form of films were prepared by casting filmogenic emulsions composed of 2% w/v chitosan (dissolved in lactic acid 1% v/v) or 1% w/v sodium alginate, with different lipid contents (25, 50 and 100% w/w biopolymer basis) and different surfactant concentrations (5, 10 and 25% w/w, lipid basis). Glycerol was used as a plasticizer (25 % w/w, biopolymer basis). After the emulsion drying process, the obtained stand-alone films were sprayed with a crosslinking solution, achieving an optimized crosslinker content of 3.2 mgCa2+/cm2 alginate film and 4 mg tripolyphosphate/cm2 chitosan film. The effect of oil and lecithin contents, as well the presence of crosslinking agents, on the film’s water vapour permeability (WVP), water vapour sorption capacity, mechanical properties and colour parameters, was evaluated. The results have shown that the lowest WVP values were obtained with formulations containing 25% lipid and 25% surfactant for chitosan films, and 100% lipid and 25% surfactant for alginate films. The application of the crosslinking agents decreased even further the WVP, especially for chitosan films (by 30%). Crosslinking also increased films’ resistance to deformation under tensile tests. Overall, the films developed present a good potential as polysaccharide-based barriers with increased resistance to water, which envisages the use of the designed formulations to produce either edible/biodegradable films or edible coatings.

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Paola Reyes-Chaparro ◽  
Nestor Gutierrez-Mendez ◽  
Erika Salas-Muñoz ◽  
Juan Guillermo Ayala-Soto ◽  
David Chavez-Flores ◽  
...  

Mechanical and barrier properties of chitosan films prepared with essential oils of clove and functional extract were studied. The films made with functional extracts (esters E6and E7) presented the significant increment of extensibility compared with the untreated chitosan films. In the case of punction test, the films made with the esters E6and E7resisted more the applied strength before tearing up compared with the chitosan control film (without any treatment). Thermogravimetric analysis values were determined for the chitosan control film and chitosan film treated with clove essential oil obtaining 112.17°C and 176.73°C, respectively. Atomic force microscopy (AFM) was used to determine their morphology by analyzing their surfaces and phase arrangement; AFM was also used to observe the porosity in chitosan-based antimicrobial films and the chitosan films incorporating functional extracts. The water vapour permeability (WVP) data showed that incorporating the functional extract to the formulation of films has a positive effect on water vapour barrier properties. In general, the incorporation of essential oils and functional extract of clove at 20% in chitosan films caused microstructural changes that were dependent on the different affinity of components.


2020 ◽  
Vol 21 (7) ◽  
pp. 2486 ◽  
Author(s):  
Andrey A. Tyuftin ◽  
Lizhe Wang ◽  
Mark A.E. Auty ◽  
Joe P. Kerry

The objective of this study was to assess the ability of producing laminated edible films manufactured using the following proteins; gelatin (G), whey protein isolate (WPI) and polysaccharide sodium alginate (SA), and to evaluate their physical properties. Additionally, films’ preparation employing these ingredients was optimized through the addition of corn oil (O). Overall, 8-types of laminated films (G-SA, G-WPI, SA-WPI, SA-G-WPI, GO-SAO, GO-WPIO, SAO-WPIO and SAO-GO-WPIO) were developed in this study. The properties of the prepared films were characterized through the measurement of tensile strength (TS), elongation at break point (EB), puncture resistance (PR), tear strength (TT), water vapour permeability (WVP) and oxygen permeability (OP). The microstructure of cross-sections of laminated films was investigated by scanning electron microscopy (SEM). Mechanical properties of films were dramatically enhanced through the addition of film layers. GO-SAO laminate showed the best barrier properties to water vapour (22.6 ± 4.04 g mm/kPa d m2) and oxygen (18.2 ± 8.70 cm3 mm/kPa d m2). SAO-GO-WPIO laminate film was the strongest of all laminated films tested, having the highest TS of 55.77 MPa, PR of 41.36 N and TT of 27.32 N. SA-G-WPI film possessed the highest elasticity with an EB value of 17.4%.


Author(s):  
Lizhe Wang ◽  
Andrey A. Tyuftin ◽  
Mark A.E. Auty ◽  
Joseph P. Kerry

The objective of this study was to assess the ability of producing laminated edible films manufactured using the following proteins; gelatin (G), whey protein isolate (WPI), and polysaccharide; sodium alginate (SA), and to evaluate their physical properties. Additionally, films’ preparation employing these ingredients was optimized through the addition of corn oil (O), Overall, 8-types of laminated films (G-SA, G-WPI, SA-WPI, SA-G-WPI, GO-SAO, GO-WPIO, SAO-WPIO, SAO-GO-WPIO were developed in this study. The properties of the prepared films were characterized through the measurement of; tensile strength (TS), elongation at break point (EB), puncture resistance (PR), tear strength (TT), water vapour permeability (WVP) and oxygen permeability (OP). The microstructure of cross-sections of laminated films was investigated by scanning electron microscopy (SEM). Mechanical properties of films were dramatically enhanced through the addition of film layers. GO-SAO laminate showed the best barrier properties to water vapour (22.6 ± 4.04 g mm/kPa d m2) and oxygen (18.2 ± 8.70 cm3 mm/kPa d m2). SAO-GO-WPIO laminate film was the strongest of all laminated films tested, having the highest TS of 55.77 MPa, PR of 41.36 N and TT of 27.32 N. SA-G-WPI film possessed the highest elasticity with an EB value of 17.4%.


2013 ◽  
Vol 30 (2) ◽  
pp. 625-631 ◽  
Author(s):  
A.L. Fadini ◽  
F.S. Rocha ◽  
I.D. Alvim ◽  
M.S. Sadahira ◽  
M.B. Queiroz ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Collins Amankwaah ◽  
Jianrong Li ◽  
Jaesung Lee ◽  
Melvin A. Pascall

Edible films can be designed to serve as carriers of antimicrobial agents and be used to control pathogenic foodborne viruses and bacteria. This research tested this concept by dissolving green tea extract (GTE) in chitosan film-forming solutions (FFS) and using it to prepare dried chitosan edible films. As a control, the GTE was also dissolved in deionized water (DW). The FFS and the dried chitosan films with the GTE and the DW without chitosan were all evaluated against murine norovirus (MNV-1), Escherichia coli K12, and Listeria innocua. Both the FFS and the DW with GTE were incubated with ~107 PFU/ml of the virus suspensions for 3 h. The chitosan films with GTE were incubated for 4 and 24 h at 23±1°C. The results showed that the DW containing 1, 1.5, and 2.5% aqueous GTE, significantly (p<0.05) reduced MNV-1 plaques by 1.7, 2.5, and 3.3 logs after 3 h exposure, respectively. Similarly, FFS containing 2.5 and 5.0% GTE reduced MNV-1 counts by 2.5 and 4.0 logs, respectively, after 3 h exposure. The dried chitosan films with 5, 10, and 15% GTE were also effective against MNV-1 infectivity. After 24 h incubation, the 5 and 10% chitosan GTE films produced significant (p<0.05) titer reductions of 1.6 and 4.5 logs, respectively. Chitosan films containing 15% GTE reduced MNV-1 plaques to undetectable levels in 24 h. All chitosan GTE films reduced E. coli K12 and L. innocua populations to undetectable levels in tryptic soy broth after 24 h exposure. The results of this study showed that edible films enriched with GTE have potential to reduce both foodborne viruses and bacteria.


Sign in / Sign up

Export Citation Format

Share Document