scholarly journals Antihypertensive and Probiotic Effects of Hidakakombu (Saccharina angustata) Fermented by Lacticaseibacillus casei 001

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2048
Author(s):  
Tetsuya Sekine ◽  
Hiroshi Nagai ◽  
Naoko Hamada-Sato

Hidakakombu (Saccharina angustata), commonly known as kelp, is an edible macroalgae mainly grown in the Hidaka region of Hokkaido. Hidakakombu is graded based on its shape and color. Low-grade Hidakakombu has low value and is distributed at a low price. It is desired to establish a method to add value to low-grade Hidakakombu. In this study, low-grade Hidakakombu was fermented by Lacticaseibacillus casei 001 to add value. Fermentation of Hidakaombu enhanced the inhibition of blood pressure elevation due to ACE inhibition. L. casei 001 in fermented Hidakakombu remained viable in simulated gastric and intestinal juices. The ACE inhibitory component in L. casei 001-fermented Hidakakombu was isolated from the fraction below 3 kDa using high-performance liquid chromatography. The purified amino acid was identified as D-Trp using nuclear magnetic resonance, mass spectroscopy, and optical rotation measurements. This is the first report on the ACE inhibitory activity of D-Trp in L. casei 001-fermented Hidakakombu. Hidakakombu fermented by L. casei 001 was shown to be a source of probiotics and functional components against hypertension. Therefore, fermentation by L. casei 001 was found to be an effective means of adding high value to low-grade Hidakombu.

Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1007 ◽  
Author(s):  
Eric Banan-Mwine Daliri ◽  
Fred Kwame Ofosu ◽  
Ramachandran Chelliah ◽  
Joong-Hark Kim ◽  
Jong-Rae Kim ◽  
...  

Enzyme treatment and fermentation of cereals are known processes that enhance the release of bound bioactive compounds to make them available for bioactivity. In this study, we tested the angiotensin converting enzyme (ACE) inhibitory ability of destarched rice, Prozyme 2000p treated destarched rice (DP), and fermented DP samples. Prozyme 2000p treatment increased the ACE inhibitory ability from 15 ± 5% to 45 ± 3%. Fermentation of the Prozyme 2000p treated samples with Enterococcus faecium EBD1 significantly increased the ACE inhibitory ability to 75 ± 5%, while captopril showed an ACE inhibition of 92 ± 4%. An untargeted metabolomics approach using Ultra-high-performance liquid tandem chromatography quadrupole time of flight mass spectrometry revealed the abundance of vitamins, phenolic compounds, antioxidant peptides, DPP IV inhibitory peptides, and antihypertensive peptides in the fermented samples which may account for its strong ACE inhibition. Although fermented DP had decreased fatty acid levels, the amount of essential amino acid improved drastically compared to destarched rice. Our results show that fermenting Prozyme-treated destarched rice with Enterococcus faecium EBD1 generates abundant bioactive compounds necessary for developing antihypertensive functional foods.


2011 ◽  
Vol 39 (3) ◽  
pp. 193-209 ◽  
Author(s):  
H. Surendranath ◽  
M. Dunbar

Abstract Over the last few decades, finite element analysis has become an integral part of the overall tire design process. Engineers need to perform a number of different simulations to evaluate new designs and study the effect of proposed design changes. However, tires pose formidable simulation challenges due to the presence of highly nonlinear rubber compounds, embedded reinforcements, complex tread geometries, rolling contact, and large deformations. Accurate simulation requires careful consideration of these factors, resulting in the extensive turnaround time, often times prolonging the design cycle. Therefore, it is extremely critical to explore means to reduce the turnaround time while producing reliable results. Compute clusters have recently become a cost effective means to perform high performance computing (HPC). Distributed memory parallel solvers designed to take advantage of compute clusters have become increasingly popular. In this paper, we examine the use of HPC for various tire simulations and demonstrate how it can significantly reduce simulation turnaround time. Abaqus/Standard is used for routine tire simulations like footprint and steady state rolling. Abaqus/Explicit is used for transient rolling and hydroplaning simulations. The run times and scaling data corresponding to models of various sizes and complexity are presented.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


2019 ◽  
Author(s):  
Zhao-Yang Zhang ◽  
Tao LI

Solar energy and ambient heat are two inexhaustible energy sources for addressing the global challenge of energy and sustainability. Solar thermal battery based on molecular switches that can store solar energy and release it as heat has recently attracted great interest, but its development is severely limited by both low energy density and short storage stability. On the other hand, the efficient recovery and upgrading of low-grade heat, especially that of the ambient heat, has been a great challenge. Here we report that solar energy and ambient heat can be simultaneously harvested and stored, which is enabled by room-temperature photochemical crystal-to-liquid transitions of small-molecule photoswitches. The two forms of energy are released together to produce high-temperature heat during the reverse photochemical phase change. This strategy, combined with molecular design, provides high energy density of 320-370 J/g and long-term storage stability (half-life of about 3 months). On this basis, we fabricate high-performance, flexible film devices of solar thermal battery, which can be readily recharged at room temperature with good cycling ability, show fast rate of heat release, and produce high-temperature heat that is >20<sup> o</sup>C higher than the ambient temperature. Our work opens up a new avenue to harvest ambient heat, and demonstrate a feasible strategy to develop high-performance solar thermal battery.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4505
Author(s):  
Jiahui Sun ◽  
Chunli Gan ◽  
Jing Huang ◽  
Zhenyue Wang ◽  
Chengcui Wu ◽  
...  

A novel analytical method involving high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) was developed for simultaneous determination of 11 phenolic acids and 12 triterpenes in Sanguisorba officinalis L. Chromatographic separation was conducted with gradient elution mode by using a DiamonsilTM C18 column (250 mm × 4.6 mm, 5 μm) with the mobile phase of 0.1% acetic acid water (A) and methanol (B). The drift tube temperature of ELSD was set at 70 °C and the nitrogen cumulative flow rate was 1.6 L/min. The method was fully validated to be linear over a wide concentration range (R2 ≥ 0.9991). The precisions (RSD) were less than 3.0% and the recoveries were between 97.7% and 101.4% for all compounds. The results indicated that this method is accurate and effective for the determination of 23 functional components in Sanguisorba officinalis L. and could also be successfully applied to study the influence of processing method on those functional components in Sanguisorba officinalis L.


1993 ◽  
Vol 17 (8) ◽  
pp. 775-778
Author(s):  
S. B. Gupta ◽  
T. S. Sheshadri
Keyword(s):  

OENO One ◽  
2021 ◽  
Vol 55 (3) ◽  
pp. 173-189
Author(s):  
Seraphim Theocharis ◽  
Nikolaos Nikolaou ◽  
Eleftheria Zioziou ◽  
Maria Kyraleou ◽  
Stamatina Kallithraka ◽  
...  

‘Xinomavro’ (the second planted red Greek variety behind ‘Agiorgitiko’) generally produces wines that are light in colour but with increased astringency, possibly related to grape flavonoid amount and composition; although irrigation is accepted as an effective means to enhance grape phenolic maturity, its role has not yet been sufficiently studied in the case of Xinomavro. This study aimed to determine the effect of post-veraison irrigation on berry anthocyanin and proanthocyanidin amount and composition, of field-grown Xinomavro vines (Vitis vinifera L.), under the typical summer conditions of Northern Greece. In a 10-year-old Xinomavro vineyard, two post-veraison watering regimes were applied—irrigation starting 20 days after veraison (mid-ripening irrigation, MRI) and irrigation starting immediately after veraison was completed (after veraison irrigation, AVI)—alongside non irrigated vines (NI), and vines irrigated continuously from berry set through harvest (continuous irrigation, CI). Proanthocyanidin composition was determined in both skins and seeds by employing phloroglucinolysis followed by HPLC-UV and MS detection (high-performance liquid chromatographic with tandem mass spectrometric and ultraviolet absorbance detection), and the anthocyanin profile was identified only in the skin extracts by HPLC-UV (high-performance liquid chromatographic with ultraviolet absorbance detection). Post-veraison irrigation increased yield parameters and reduced anthocyanin levels and the proportion of their stable forms (acylated vs. non-acylated, tri-oxygenated and methoxylated on the B-ring vs. di-oxygenated and hydroxylated), compared to NI vines; however, these effects were more pronounced in the case of early post-veraison irrigation (AVI) than late-season irrigation (MRI). Irrigation also increased the mean Degree of Polymerization (mDP) and prodelphinidin percentage of skin tannins and decreased mDP of seed tannins. In the light of the necessity to control the accelerated ripening under the increasingly hotter and drier climatic conditions, late irrigation (MRI) might provide a solution to avoid excessive sugar levels and allow a slightly higher yield without significant reductions in berry phenolic content. The results suggest that the optimisation of the timing of irrigation could provide an effective adaptation strategy to climate change in Mediterranean viticultural areas.


Author(s):  
Иван Бондаренко ◽  
Ivan Bondarenko ◽  
Анна Гринёк ◽  
Anna Grinek ◽  
Леонид Ковалев ◽  
...  

Author(s):  
Keli Xiao ◽  
Yanjun Jin ◽  
Aijia Zou ◽  
Lin Li ◽  
Wei He

<p>The bicycle viaduct is an effective method to solve the contradiction between the rapid development of urbanization and low carbon. In this paper, a 4.8km long viaduct was designed between the Happy Valley and Phoenix Peak park of Chengdu, China. The standard sections of the whole viaduct adopt steel box girder and Ultra High Performance Concrete (UHPC) precast beam with 30m spans and 5.5m widths of bridge deck (single). And the UHPC connection plate is used to replace the traditional mechanical telescopic device to realize the continuous bridge deck between the ends of the simple beam, which embodies the concept of ‘green bridge’. This line focuses on the design of three nodes, which includes the five towers cable-stayed bridge, the double deck arch bridge across the Fu River and the continuous beam bridge in leisure area. The three bridges enrich the bridge modelling, reflecting the application of aesthetics in the bridge. The whole traffic is based on bicycle, which adopts separation traffic with double speed of fast and slow speed and can be used for sightseeing and travel. This design highlights the people-oriented, can ensure traffic safety and achieve a ‘safe travel, green travel’. Therefore, the viaduct is an effective means to solve the disharmony between the urban development and the environment.</p>


Sign in / Sign up

Export Citation Format

Share Document