scholarly journals Cold Microfiltration as an Enabler of Sustainable Dairy Protein Ingredient Innovation

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2091
Author(s):  
Thomas C. France ◽  
Alan L. Kelly ◽  
Shane V. Crowley ◽  
James A. O’Mahony

Classically, microfiltration (0.1–0.5 µm) of bovine skim milk is performed at warm temperatures (45–55 °C), to produce micellar casein and milk-derived whey protein ingredients. Microfiltration at these temperatures is associated with high initial permeate flux and allows for the retention of the casein fraction, resulting in a whey protein fraction of high purity. Increasingly, however, the microfiltration of skim milk and other dairy streams at low temperatures (≤20 °C) is being used in the dairy industry. The trend towards cold filtration has arisen due to associated benefits of improved microbial quality and reduced fouling, allowing for extended processing times, improved product quality and opportunities for more sustainable processing. Performing microfiltration of skim milk at low temperatures also alters the protein profile and mineral composition of the resulting processing streams, allowing for the generation of new ingredients. However, the use of low processing temperatures is associated with high mechanical energy consumption to compensate for the increased viscosity, and thermal energy consumption for inline cooling, impacting the sustainability of the process. This review will examine the differences between warm and cold microfiltration in terms of membrane performance, partitioning of bovine milk constituents, microbial growth, ingredient innovation and process sustainability.

2021 ◽  
Vol 910 (1) ◽  
pp. 012040
Author(s):  
Dhia Ibrahim Jerro Ai-Bedrani ◽  
Sakena Taha Hasan ◽  
Abdali Alwan Altaee ◽  
Ali Ahmed Alqotbi

Abstract This study was conducted to determine the effect of using whey protein concentrate (WPC) as a fat replacer and its role in improving the physicochemical, rheological, and sensory properties of low-fat soft cheese by adding four different ratios of (WPC) as (1.0,1.5,2.0,2.5) % to reconstituted bovine skim milk in four treatments (W2, W3, W4, W5)respectively, besides control cheese treatment (W1)which was made of whole bovine milk. The chemical tests included the percentage of moisture, protein, fat, lactose, and ash. The physical tests included the percentage of total acidity, pH, springiness, and compression ability besides cheese yield percentage, total energy, and sensory evaluation after cheese making and throughout the 14 days of storage time at (5±1)°C. Results showed that all (WPC) treatments have high moisture percentage compared to the control treatment, though all the treatments had a decrease in moisture values with storage. Results also showed a decrease in fat content for all the skim milk treatments with (WPC) addition. Lactose percentages were converged in all treatments. The results also showed an increase in total acidity and a decrease in pH for the (WPC) addition treatments. Microbiological results showed increased total count for the (WPC) addition treatments compared with the control. Furthermore, the results showed that adding (WPC) led to improving the springiness and compression ability and increased the cheese yield. On the other hand, it decreased the cheese energy compared to control. Sensory properties were improved by added WPC.


1971 ◽  
Vol 38 (2) ◽  
pp. 171-177 ◽  
Author(s):  
B. J. Kitchen

SummaryThe type and distribution of esterases in milk has been investigated using selective inhibitors during normal assay procedures and during histochemical staining of polyacrylamide gels. Enzyme solutions were obtained from skim-milk by acid and alkali precipitation, followed by ammonium sulphate fractionation, ultra-filtration and Sephadex G-100 chromatography. The major type of esterase present was an aryl-esterase (E.C. 5.1.1.2) while a smaller amount of a choline-ester hydrolase (E.C. 3.1.1.7; 3.1.1.8) was detected. The significance of these findings is discussed.


2016 ◽  
Vol 40 (2) ◽  
pp. 144 ◽  
Author(s):  
Abubakar Abubakar

This research was conducted to investigate the quality of low-fat white cheese produced using raw material of modified milk. Five treatments applied were (A1) Using reduced fat (60%) milk, (A2) Using emulsion of corn oil in skim milk (replacing milk fat with corn oil), (A3) Using emulsion of corn oil in skim milk and addition of whey protein concentrate (replacing milk fat with corn oil and the addition of whey protein concentrate=WPC), (A4) Using skim milk and water emulsion oil in water, and (A5) replacing milk fat with corn oil and the addition of probiotic (Lactobacillus casei). Each treatment was replicated three times. The selected that skim milk in corn oil emulsion with the addition of probiotics, the results showed had cheese quality characteristics as follow: yield 12.94±0.16%, hardnes 48.07±10.12 g, softness 8.51±0.54 kg/s, moisture content 50.37±1.60%, ash content 7.38±1.75% (dry matter), fat content 41.06±6.07% (dry matter), protein content 37.85±3.25% (dry matter), phosphorus content 346.62±25.61 mg/100g (dry matter), calcium content 860.78±87.91 mg/100g (dry matter), white color, regular texture, not flavorfull, salty taste, soft texture, elastic, ordinary preference acceptance.


2003 ◽  
Vol 39 (1-2) ◽  
pp. 43-58 ◽  
Author(s):  
V. Kamavaram ◽  
D. Mantha ◽  
R.G. Reddy

The electrorefining of aluminum alloy (A360) in ionic liquids at low temperatures has been investigated. The ionic liquid electrolyte was prepared by mixing anhydrous AlCl3 and 1-Butyl-3- methylimidazolium chloride (BMIC) in appropriate proportions. The effect of the cell voltage temperature, and the composition of the electrolyte on the electrorefining process has been studied. The characterization of the deposited aluminum was performed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The influence of experimental parameters such as cell voltage and concentration of AlCl3 in the electrolyte on the deposit morphology was discussed. The composition of the aluminum deposits was analyzed using X-ray fluorescence spectrometer (XRF). Aluminum deposits with purity higher than 99.89 % were obtained. At a cell voltage of 1.0 V vs. Al/Al(III), the energy consumption was about 3 kWh/kg-Al. The main advantage of the process is low energy consumption compared to the existing industrial aluminum refining process.


1997 ◽  
Vol 80 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Catharina Y W Ang ◽  
Luo Wenhong

Abstract A rapid and sensitive liquid chromatographic (LC) method was developed for the determination of am- picillin residues in raw bovine milk, processed skim milk, and pasteurized, homogenized whole milk with vitamin D. Milk samples were deprote- inized with trichloroacetic acid (TCA) and acetonitrile. After centrifugation, the clear supernatant was reacted with formaldehyde and TCA under heat. The major fluorescent derivative of ampicillin was then determined by reversed-phase LC with fluorescence detection. Average recoveries of ampicillin fortified at 5,10, and 20 ppb (ng/mL) were all >85% with coefficients of variation <10%. Limits of detection ranged from 0.31 to 0.51 ppb and limits of quantitation, from 0.66 to 1.2 ppb. After appropriate validation, this method should be suitable for rapid analysis of milk for ampicillin residues at the tolerance level of 10 ppb.


2015 ◽  
Vol 77 ◽  
pp. 450-459 ◽  
Author(s):  
Vincenza Ferraro ◽  
Ana Raquel Madureira ◽  
Bruno Sarmento ◽  
Ana Gomes ◽  
Manuela E. Pintado

1960 ◽  
Vol 27 (1) ◽  
pp. 91-102 ◽  
Author(s):  
F. H. McDowall ◽  
J. A. Singleton ◽  
B. S. Le Heron

SummaryProduction of diacetyl and acetoin by starters in cold skim-milk and cream was shown to increase with increase in the proportion of starter culture added, with some limitations at the higher rates of starter addition.With Streptococcus diacetilactis starter in skim-milk at 50°F the relation between proportion of starter added and production of diacetyl was linear up to addition at the 4% level, whereas at 43°F it was approximately linear up to the 10% level. At both 50 and 43°F the relation between the proportion of starter added and the production of acetoin was linear up to the 10% level.With Camb starter in skim-milk at both 50 and 43°F there were regular increases in production of diacetyl up to the 4% level of addition, but only minor changes thereafter with increase in the proportion of starter added up to 10%. At both temperatures the maximum production of acetoin was reached with the 7% rate of addition.Production of diacetyl and acetoin in skim-milk was greater at 50°F than at 43°F with both starters for all proportions up to 10%, and it was greater for Str. diacetilactis than for the mixed cultures.Except at the higher rates of addition of starter and at the higher temperature there were no concomitant increases in the acidity of the milk or lowering of the pH values. It appears that at low temperatures production of diacetyl by starters in sweet milk and cream proceeds independently of production of lactic acid.Similar results were obtained in a series of experimental buttermaking trials and some small commercial-scale trials, in which varying proportions of starter were added to creams after pasteurizing and before holding overnight for churning. With the cream-holding temperatures used, mainly 40–50°F, the pH values of the butters were not appreciably lowered by the starter additions to the cream. At all the rates of addition there were with Str. diacetilactis starter higher contents of diacetyl in the butter than with Camb starter. There was no indication of any relationship between the proportion of starter added and the keeping quality of the butter.


1985 ◽  
Vol 52 (2) ◽  
pp. 255-266 ◽  
Author(s):  
Eric C. Needs ◽  
Malcolm Anderson ◽  
Stuart J. Payne ◽  
Elizabeth A. Ridout

SUMMARYThe effect of separating conditions on lipase activity and free fatty acid levels in preheated milk, cream and skim milk was measured on nine occasions during a 12-week period covering the seasonal change from winter feeding to summertime grazing. This change consisted of four periods each representing a different type of forage intake, namely: silage, kale, daytime grazing and 24 h grazing. Milk was separated at 30, 40, 50 and 60°C with preheating times of 10, 25 and 55 s. Results were expressed both as absolute values and in terms of changes relative to the original unheated milk. Lipase activity and free fatty acid concentration were significantly reduced as separation temperature increased but were not influenced by holding time. The loss of activity in cream was progressive so that at 60°C only 40% of the original activity remained. Up to 50°C little change occurred in preheated milk or skim milk activity, while at 60°C 83 and 76% respectively of the original activity remained. The amount of activity calculated to be associated with the fat fraction of the cream also decreased with temperature. Activity varied significantly with date; maximum values were observed during the first 3 weeks of summertime grazing. Relative activity values indicated that the susceptibility of milk lipase to heat inactivation also varied with date. Lipolysis was also significantly affected by date. Cream free fatty acid levels were lower during the period of daytime grazing and were significantly higher than those in preheated milk. The correlation between lipase activity and free fatty acid levels was generally poor, accounting for between 0 and 34% of the variance. Possible reasons for the effect of separating temperature on lipolysis in cream are discussed.


Sign in / Sign up

Export Citation Format

Share Document