scholarly journals The Bactericidal Efficacy and the Mechanism of Action of Slightly Acidic Electrolyzed Water on Listeria monocytogenes’ Survival

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2671
Author(s):  
Huiying Li ◽  
Duo Liang ◽  
Jin Huang ◽  
Chaojing Cui ◽  
Huan Rao ◽  
...  

In the present work, the bactericidal efficacy and mechanism of slightly acidic electrolyzed water (SAEW) on L. monocytogenes were evaluated. The results showed that the strains of L. monocytogenes were killed completely within 30 s by SAEW whose available chlorine concentration (ACC) was higher than 12 mg/L, and it was confirmed that ACC is the main factor affecting the disinfection efficacy of SAEW. Moreover, our results demonstrated that SAEW could destroy the cell membrane of L. monocytogenes, which was observed by SEM and FT-IR, thus resulting in the leakage of intracellular substances including electrolyte, protein and nucleic acid, and DNA damage. On the other hand, the results found that SAEW could disrupt the intracellular ROS balance of L. monocytogenes by inhibiting the antioxidant enzyme activity, thus promoting the death of L. monocytogenes. In conclusion, the bactericidal mechanism of SAEW on L. monocytogenes was explained from two aspects including the damage of the cell membrane and the breaking of ROS balance.

2017 ◽  
Vol 5 (1) ◽  
pp. 87
Author(s):  
Gomathi Jeyam. M ◽  
Ramanibai Ravichandran

Omega-3 family (ω-3) of polyunsaturated fatty acids (PUFA) was considered as an important biochemical for the physiological function of all trophic level animals. In this study, we demonstrated the effect of algal diet on fatty acids composition (FA), antioxidant enzymes and DNA damage of Moina brachiata from Adyar River and Kolavoi Lake. 8 different fatty acids were identified in M. brachiata through GC-MS analysis and we noticed two PUFA (Eicosapentaenoic acid, EPA 20:5 (ω-3); Linoleic acid 18:2 (ω-6)). The dietary fatty acid accumulation and bioconversion capacity of M. brachiata have differed in two lakes fed with algal diet. The high amount of ω-3 PUFA was observed in M. brachiata fed with Scenedesmus sp. in Kolavoi Lake (35.84%) followed by Adyar River (33.78%). PUFA content was significantly declined in wild M. brachiata of Adyar River (17.44%) followed by Kolavoi lake (25.78%). On the other hand, high level of Malondialdehyde (MDA) and decreasing level of key antioxidant enzymes likes Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GSH) and DNA damage were observed in wild M. brachiata of Adyar River. Hence, the algal diet could enhance the level of antioxidant enzyme activity by decreasing the level of MDA and it does not show DNA damage on M. brachiata. Overall, the results obtained in this study explored that Scenedesmus sp., has the ability to enhance the PUFA content, antioxidant enzyme activity and prevent the DNA damage in M. brachiata which was declined in the wild animal due to the environmental stress conditions.


2009 ◽  
Vol 24 (1) ◽  
pp. 66-73 ◽  
Author(s):  
Anita K. Patlolla ◽  
Constance Barnes ◽  
Clement Yedjou ◽  
V. R. Velma ◽  
Paul B. Tchounwou

2020 ◽  
Author(s):  
Lisa Heyman ◽  
Antonios Chrysargyris ◽  
Kristof Demeestere ◽  
Nikolaos Tzortzakis ◽  
Monica Höfte

Abstract BackgroundClimate change will increase the occurrence of plants simultaneously suffering drought and pathogen stress. Although it is well-known that drought can alter the way plants respond to pathogens, knowledge about the effect of concurrent drought and biotic stress in grapevine is scarce. This is especially true for Plasmopara viticola, the causal agent of grapevine downy mildew. This research addresses how vines with different drought tolerance respond to the challenge with P. viticola, drought stress or their combination, and how one stress affects the other. ResultsArtificial inoculation was performed on two cultivars, exposed to full or deficit irrigation, in the Mediterranean climate of Cyprus. In parallel, leaf disks from these plants were inoculated in controlled conditions. Leaves were sampled at an early infection stage to determine the influence of the single and combined stresses on oxidative parameters, chlorophyll, and phytohormones. Under irrigation, the local Cypriot cultivar Xynisteri was more susceptible to P. viticola than the drought-sensitive Chardonnay. The successful infection by P. viticola at 1.5 days post inoculation was associated with high levels of indole-3-acetic acid (IAA), salicylic acid (SA), jasmonic acid (JA), and proline and strong decreases in antioxidant enzyme activity. Drought, on the other hand, triggered the accumulation of IAA and abscisic acid (ABA), which antagonized JA and SA. Exposure to drought stress increased the susceptibility to P. viticola of the leaves inoculated in controlled conditions. Conversely, both cultivars showed resistance against P. viticola when inoculated in planta under continued deficit irrigation. Despite their resistance, the pathogen-associated responses in IAA, antioxidant enzyme activity, and proline still occurred in these drought-stressed plants. Surprisingly, abscisic acid, rather than the generally implicated jasmonic and salicylic acid, seemed to play a prominent role in this resistance. ConclusionsDrought exposure increased the susceptibility of in vitro inoculated leaves. Conversely, deficit irrigation induced resistance to P. viticola in both Chardonnay and Xynisteri when inoculated in planta. ABA, rather than JA and SA, was implicated in this resistance. The irrigation-dependent susceptibility highlights that the changing climate and the practices used to mitigate its effects, may have a profound impact on plant pathogens.


Author(s):  
Anna Lubkowska ◽  
Iwona Bryczkowska ◽  
Izabela Gutowska ◽  
Iwona Rotter ◽  
Natalia Marczuk ◽  
...  

The aim of this study was to verify whether eight-week-long swimming exercise training would evaluate the level of selected indicators of the pro-oxidant/antioxidant status in response to cold water in comparison with swimming under thermoneutral conditions in sedentary male and female elderly rats. The exercise-trained groups swam four min/day and five days a week during eight weeks of housing. Exercise was performed by swimming in glass tanks containing tap water maintained according to group at 5 °C and 36 °C. At the end of treatment (48 h after the last session), all rats were anaesthetized. The level of chosen biomarkers of oxidative stress and antioxidant enzyme activity was determined in the red blood cells and plasma. The results of study show that female rats seem to be better adapted to changing thermal conditions of the environment, developing not only morphological, but also antioxidant, defense mechanisms, mainly in the form of increased erythrocyte superoxide dismutase (SOD) activity and glutathione (GSH) concentration to restore the pro-oxidant/oxidant balance of the organism. Significantly higher concentrations of GSH were observed in the female rats of the group swimming in cold water (by 15.4% compared to the control group and by 20.5% in relation to the group of female rats swimming at 36 °C). In the group exposed to swimming training exercise in cold water, a significantly higher activity of SOD1 (by 13.4%) was found compared to the control group. On the other hand, the organs of ageing male rats show a reduced capacity to increase the metabolic response to low temperatures compared to female ones. In addition, it was demonstrated that cold exposure leads to an increase in lipid peroxidation in tissues. On the other hand, the repeated exposure to low levels of oxidative stress may result in some adaptive changes in organisms that help them to resist stress-induced damage.


2020 ◽  
Author(s):  
Lisa Heyman ◽  
Antonios Chrysargyris ◽  
Kristof Demeestere ◽  
Nikolaos Tzortzakis ◽  
Monica Höfte

Abstract BackgroundClimate change will increase the occurrence of plants being simultaneously subjected to drought and pathogen stress. Although it is well known that drought can alter the way in which plants respond to pathogens, knowledge about the effect of concurrent drought and biotic stress on grapevine is scarce. This is especially true for Plasmopara viticola, the causal agent of grapevine downy mildew. This research addresses how vines with different drought tolerances respond to challenge with P. viticola, drought stress or their combination and how one stress affects the other.ResultsArtificial inoculation was performed on two cultivars exposed to full or deficit irrigation in the Mediterranean climate of Cyprus. In parallel, leaf discs from these plants were inoculated under controlled conditions. Leaves were sampled at an early infection stage to determine the influence of the single and combined stresses on oxidative parameters, chlorophyll, and phytohormones. Under irrigation, the local Cypriot cultivar Xynisteri was more susceptible to P. viticola than the drought-sensitive cultivar Chardonnay. Successful infection by P. viticola at 1.5 days post inoculation was associated with high levels of indole-3-acetic acid (IAA), salicylic acid (SA), jasmonic acid (JA), and proline and strong decreases in antioxidant enzyme activity. Drought, on the other hand, triggered the accumulation of IAA and abscisic acid (ABA), which antagonized JA and SA. Exposure to drought stress increased the susceptibility to P. viticola of the leaves inoculated under controlled conditions. Conversely, both cultivars showed resistance against P. viticola when inoculated in planta under continued deficit irrigation. Despite their resistance, the pathogen-associated responses of IAA, antioxidant enzyme activity, and proline still occurred in these drought-stressed plants. Surprisingly, ABA, rather than the generally implicated JA and SA, seemed to play a prominent role in this resistance.ConclusionsDrought exposure increased the susceptibility of leaves inoculated in vitro. Conversely, deficit irrigation induced resistance to P. viticola in both Chardonnay and Xynisteri plants inoculated in planta. ABA, rather than JA and SA, was implicated in this resistance. The irrigation-dependent susceptibility indicates that the changing climate and the practices used to mitigate its effects may have a profound impact on plant pathogens.


Sign in / Sign up

Export Citation Format

Share Document