scholarly journals Pilot Scale Cavitational Reactors and Other Enabling Technologies to Design the Industrial Recovery of Polyphenols from Agro-Food By-Products, a Technical and Economical Overview

Foods ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 130 ◽  
Author(s):  
Giancarlo Cravotto ◽  
Francesco Mariatti ◽  
Veronika Gunjevic ◽  
Massimo Secondo ◽  
Matteo Villa ◽  
...  

We herein provide an overview of the most recent multidisciplinary process advances that have occurred in the food industry as a result of changes in consumer lifestyle and expectations. The demand for fresher and more natural foods is driving the development of new technologies that may efficiently operate at room temperature. Moreover, the huge amount of material discarded by the agro-food production chain lays down a significant challenge for emerging technologies that can provide new opportunities by recovering valuable by-products and creating new applications. Aiming to design industrial processes, there is a need for pilot scale plants such as the ‘green technologies development platform’, which was established by the authors. The platform is made up of a series of multifunctional laboratories that are equipped with non-conventional pilot reactors, developed in direct collaboration with partner companies, in order to bridge the enormous gap between academia and industry via the large-scale exploitation of relevant research achievements. Selected key, enabling technologies for process intensification make this scale-up feasible. We make use of two selected examples, the grape and olive production chains, to show how cavitational reactors, which are based on high-intensity ultrasound and rotational hydrodynamic units, can assist food processing and the sustainable recovery of waste, to produce valuable nutraceuticals as well as colouring and food–beverage additives.

Author(s):  
Giancarlo Cravotto ◽  
Francesco Mariatti ◽  
Veronika Gunjevic ◽  
Massimo Secondo ◽  
Matteo Villa ◽  
...  

We herein provide an overview of the most recent multidisciplinary process advances that have occurred in the food industry as a result of changes in consumer lifestyle and expectations. The demand for fresher and more natural foods is driving the development of new technologies that may efficiently operate at room temperature. Moreover, the huge amount of material discarded by the agro-food production chain lays down a significant challenge for emerging technologies that can provide new opportunities by recovering valuable by-products and creating new applications. Aiming to design industrial processes, there is a need of pilot scale plants such as the “green technologies development platform” that was established by the authors. The platform is made up of a series of multifunctional laboratories that are equipped with non-conventional pilot reactors developed in direct collaboration with partner companies in order to bridge the enormous gap between academia and industry via the large-scale exploitation of relevant research achievements. Selected key, enabling technologies for process intensification make this scale-up feasible. We make use of two selected examples, the grape and olive production chains, to show how cavitational reactors, which are based on high-intensity ultrasound and rotational hydrodynamic units, can assist food processing and the sustainable recovery of waste to produce valuable nutraceuticals as well as colouring and food-beverage additives.


2011 ◽  
Vol 63 (11) ◽  
pp. 2547-2552 ◽  
Author(s):  
Ismail M. Khokhawala ◽  
Parag R. Gogate

The present work reports the use of sonochemical reactors for the degradation of phenol in the presence of additives with an objective of enhancing the rates of degradation at a pilot scale operation. Process intensification studies have been carried out using additives such as hydrogen peroxide (H2O2) (0.5–2.0 g/L), sodium chloride (0.5–1.5 g/L) and solid particles viz. cupric oxide (CuO) and titanium dioxide (TiO2) (0.5–2.5 g/L). Optimum concentration for H2O2 and sodium chloride has been observed beyond which no beneficial effects are obtained even with additional loadings. Maximum extent of degradation has been observed by using ultrasound/H2O2/CuO approach at a solid loading of 1.5 g/L followed by ultrasound/H2O2/TiO2 approach at a loading of 2.0 g/L. The obtained results at pilot scale operation in the current work are very important especially due to the fact that the majority of earlier studies are at laboratory scale which cannot provide the design related information for large scale operation as required scale up ratios are quite high adding a degree of uncertainty in the design. The novelty of the present work lies in the fact that it highlights successful application of sonochemical reactors for wastewater treatment at pilot scale operation.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1459 ◽  
Author(s):  
Susanna Raho ◽  
Vito Emanuele Carofiglio ◽  
Marco Montemurro ◽  
Valerio Miceli ◽  
Domenico Centrone ◽  
...  

In the last decade, the dairy industry underwent a rapid expansion due to the increasing demand of milk-based products, resulting in high quantity of wastewater, i.e., whey and ricotta cheese exhausted whey (RCEW). Although containing high content of nutritional compounds, dairy by-products are still disposed as waste rather being reintroduced in a new production chain, hence leading to environmental and economic issues. This study proposes a new biotechnological approach based on the combination of membrane filtration and fermentation to produce poly-hydroxyalkanoates (PHA), biodegradable bioplastics candidate as an alternative to petroleum-derived plastics. The protocol, exploiting the metabolic capability Haloferax mediterranei to synthesize PHA from RCEW carbon sources, was set up under laboratory and pilot scale conditions. A multi-step fractionation was used to recover a RCEW fraction containing 12.6% (w/v) of lactose, then subjected to an enzymatic treatment aimed at releasing glucose and galactose. Fermentation conditions (culture medium for the microorganism propagation, inoculum size, time, and temperature of incubation) were selected according to the maximization of polymer synthesis, under in-flasks experiments. The PHA production was then tested using a bioreactor system, under stable and monitored pH, temperature, and stirring conditions. The amount of the polymer recovered corresponded to 1.18 g/L. The differential scanning calorimetry (DSC) analysis revealed the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as the polymer synthesized, with a relatively high presence of hydroxyvalerate (HV). Identity and purity of the polymer were confirmed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and X-ray photoelectron (XPS) spectroscopy analyses. By combining the fractionation of RCEW, one of the most abundant by-products from the agri-food industry, and the use of the halophile Hfx mediterranei, the production of PHBV with high purity and low crystallinity has successfully been optimized. The process, tested up to pilot scale conditions, may be further implemented (e.g., through fed-batch systems) and used for large-scale production of bioplastics, reducing the economical and environmental issues related the RCEW disposal.


Author(s):  
Rita Nasti ◽  
Andrea Galeazzi ◽  
Stefania Marzorati ◽  
Federica Zaccheria ◽  
Nicoletta Ravasio ◽  
...  

AbstractRecovery of agro and food-industrial waste and their valorisation via green technologies can help to outline new concepts of industrial strategies. In this contest, a fat enriched of added-value components was extracted from coffee silverskin by applying a supercritical fluid extraction technique (sc-CO2). An appropriate modulation of process parameters like temperature (T = 35, 50, 60 °C) and pressure (p = 200–300 bar) influences the fat yield and the chemical composition, opening the way for targeted extraction. The extraction time, the organic solvent use and the energy consume were reduced compared to Soxhlet. Moreover, a mathematical model was constructed based on the experimental data collected, employed apparatus, and physico-chemical characteristics of biomass, pointing to a possible industrial scale-up. The experimental results are accompanied by a preliminary cost of manufacturing (COM), highlighting how the high investment for the apparatus is compensated by several benefits. Graphic Abstract


2013 ◽  
Vol 312 ◽  
pp. 498-501 ◽  
Author(s):  
Jie Wu Leng ◽  
Ping Yu Jiang ◽  
Fu Qiang Zhang ◽  
Wei Cao

The role of manufacturing has changed from a producer of products and services to one that integrates the whole industry value chain. In this situation, this paper proposed a new-type networked manufacturing mode which is called outsourcing-driven social manufacturing (od-SM) to solve complex manufacturing problems and perform large-scale collaborative manufacturing. First, the framework of od-SM is proposed. Then, some key enabling technologies such as modeling and community structure of outsourcing-driven social manufacturing network (od-SMN) and generation of outsourcing-driven transient machining system (od-TMS) are talked about in detail. Finally, the conclusions and future work are put forward.


Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Vikash Sharma ◽  
Rakesh D. Raut ◽  
Usharani Hareesh Govindarajan ◽  
Balkrishna Eknath Narkhede

PurposeThe research article's primary purpose is to understand the advancements in urban logistics and allied fields over time along with a consideration of its enabling technologies.Design/methodology/ApproachAn initial review is used to build a keyword vocabulary, combinations of which were then applied to the Scopus, ScienceDirect, Emerald Insights, the Web of Science (WOS), Elsevier, Taylor and Francis, Wiley, Inderscience, Springer, Google Scholar and IEEE Xplore for extracting academic publication collection. The first part includes bibliometric analysis; network analysis is done based on the finally selected 645 papers (only those articles include either of the keywords mentioned above in title, abstract, and keywords). The second part conducts a review of the existing literature review studies (only 21 literature review studies out of 645 articles). The last one discusses the advancement in the topics based on the selected research articles.FindingsThis research discussed the advancement of the urban logistics and allied field, key academic forums and key researchers. It is evident from the analysis that the research related to key emerging themes like implementing innovative concepts and sustainability; application of green technologies; data collection, visualization, monitoring and sharing; and automatic logistic systems are still in the nascent stage. However, these research areas gained momentum in the recent past.Research limitationsUrban logistics are essential and play a crucial role for such rapidly growing cities to function. Despite playing a vital role, urban ecosystem logistics is often neglected in formal urban planning. Hence, as a response to customer and business demand, private entities regularly invest in new technologies and solutions. Since such investments are toward profits, various environmental, social and economic challenges arise.Originality/valueThis research investigates the advancements in urban logistics toward smart, sustainable reforms in developing enabling technologies and markets. The obtained research articles are subjected to bibliometric, descriptive, network and content analysis to present a rundown of advancements, relationships and trends in emerging research gaps.


SPE Journal ◽  
2018 ◽  
Vol 23 (06) ◽  
pp. 2444-2455 ◽  
Author(s):  
Franklin M. Orr

Summary Recent progress in carbon capture, utilization, and storage (CCUS) is reviewed. Considerable research effort has gone into carbon dioxide (CO2) capture, with many promising separation processes in various stages of development, but only a few have been tested at commercial scale, and considerable additional development will be required to determine competitiveness of new technologies. Processes for direct capture of CO2 from the air are also under development and are starting to be tested at pilot scale. Transportation of CO2 to storage sites by pipeline is well-established, though substantially more pipeline capacity will be required if CCUS is to be undertaken at a large scale. Considerable experience has now been built up in enhanced-oil-recovery (EOR) operations, which have been under way since the 1970s. Storage in deep saline aquifers has also been achieved at scale. Recent large-scale projects that capture and store CO2 are described, as are current and potential future markets for CO2. Potential effects of changes in the US tax code Section 45Q on those markets are summarized. Future deployment of CCUS will depend more on cost reductions for CO2 separations, development of new markets for CO2, and the complexities of project finance than on technical issues associated with storage of CO2 in the subsurface.


2020 ◽  
Vol 26 (44) ◽  
pp. 5700-5712
Author(s):  
Silvia Tagliapietra ◽  
Arianna Binello ◽  
Fabio Bucciol ◽  
Vladimir Trukhan ◽  
Mariachiara Colia ◽  
...  

Combinations of different technologies are at the heart of the development and implementation of new, innovative processes and approaches for Industry 4.0 in the field of medicinal chemistry and drug discovery. Process intensification and advances in high-throughput synthetic techniques can dramatically improve reaction rates in processes for which slow kinetics represents a bottleneck. Easier access to target-based chemical library collections offers wider access to new leads for drug development. Green enabling technologies are a reliable ally for the design of environmentally friendly synthetic processes and more highly competitive pharmaceutical production. Mechanochemistry, microwaves, ultrasound and flow chemistry are mature techniques that can boast drug synthesis when properly integrated into the production chain. In this review, we selected examples from the literature of the last five years related to medicinal chemistry.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
A. Barros ◽  
H. Pereira ◽  
J. Campos ◽  
A. Marques ◽  
J. Varela ◽  
...  

Abstract Industrial scale-up of microalgal cultures is often a protracted step prone to culture collapse and the occurrence of unwanted contaminants. To solve this problem, a two-stage scale-up process was developed – heterotrophically Chlorella vulgaris cells grown in fermenters (1st stage) were used to directly inoculate an outdoor industrial autotrophic microalgal production unit (2nd stage). A preliminary pilot-scale trial revealed that C. vulgaris cells grown heterotrophically adapted readily to outdoor autotrophic growth conditions (1-m3 photobioreactors) without any measurable difference as compared to conventional autotrophic inocula. Biomass concentration of 174.5 g L−1, the highest value ever reported for this microalga, was achieved in a 5-L fermenter during scale-up using the heterotrophic route. Inocula grown in 0.2- and 5-m3 industrial fermenters with mean productivity of 27.54 ± 5.07 and 31.86 ± 2.87 g L−1 d−1, respectively, were later used to seed several outdoor 100-m3 tubular photobioreactors. Overall, all photobioreactor cultures seeded from the heterotrophic route reached standard protein and chlorophyll contents of 52.18 ± 1.30% of DW and 23.98 ± 1.57 mg g−1 DW, respectively. In addition to providing reproducible, high-quality inocula, this two-stage approach led to a 5-fold and 12-fold decrease in scale-up time and occupancy area used for industrial scale-up, respectively.


Sign in / Sign up

Export Citation Format

Share Document