scholarly journals Comparative Evaluation of Piper nigrum, Rosmarinus officinalis, Cymbopogon citratus and Juniperus communis L. Essential Oils of Different Origin as Functional Antimicrobials in Foods

Foods ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 141 ◽  
Author(s):  
Katarzyna Leja ◽  
Małgorzata Majcher ◽  
Wojciech Juzwa ◽  
Katarzyna Czaczyk ◽  
Marcin Komosa

Essential oils can be used as preservatives in foods because of their ability to inhibit bacteria growth in low concentration, which does not influence on foods’ organoleptic properties and does not generate the resistance mechanisms in cells. The aim of that work was to compare the effectiveness of commercial oils from black pepper (Piper nigrum), rosemary (Rosmarinus officinalis), lemongrass (Cymbopogon citratus) and juniper (Juniperus communis L.) with oils obtained in our laboratory. The typical cultivation method was supported by the flow cytometry to detect the cells of very low physiologic and metabolic activity. Our investigation demonstrated that both types of oils can effectively inhibit the growth of saprophytic bacteria P. orientalis. The oils distilled in our laboratory had a bacteriostatic effect at a lower concentration, which is important for application in the food industry. Flow cytometry analyzes and confirmed the thesis that essential oils do not have a germicidal effect on bacteria cells.

Foods ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 277 ◽  
Author(s):  
Katarzyna Leja ◽  
Kamila Szudera-Kończal ◽  
Ewa Świtała ◽  
Wojciech Juzwa ◽  
Przemysław Kowalczewski ◽  
...  

The aim of this work was to estimate the antibacterial activity of selected essential oils on Pseudomonas orientalis strains isolated from foods. An attempt was also made to identify the mechanisms of the action of the plant oils. Classical methods of assessment of the effectiveness of antimicrobial activity of oils were linked with flow cytometry. It was observed that bergamot, lemongrass, bitter orange, juniper, and black pepper oils have bacteriostatic effect against P. orientalis P49. P. orientalis P110 is sensitive to lime, lemongrass, juniper, rosemary, and black pepper oils. Additionally, plant oils with biostatic effect on P. orientalis limited the intracellular metabolic activity of cells; this was closely linked with the ability of plant oils’ bioactive components to interact with bacteria cell membrane, causing the release of membrane proteins. As a result, the selective permeability of the cell membranes were damaged and the bacterial shape was transformed to coccoid in form.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4244 ◽  
Author(s):  
Dosoky ◽  
Satyal ◽  
Barata ◽  
da Silva ◽  
Setzer

Black pepper (Piper nigrum) is historically one of the most important spices and herbal medicines, and is now cultivated in tropical regions worldwide. The essential oil of black pepper fruits has shown a myriad of biological activities and is a commercially important commodity. In this work, five black pepper essential oils from eastern coastal region of Madagascar and six black pepper essential oils from the Amazon region of Brazil were obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry. The major components of the essential oils were α-pinene, sabinene, β-pinene, δ-3-carene, limonene, and β-caryophyllene. A comparison of the Madagascar and Brazilian essential oils with black pepper essential oils from various geographical regions reported in the literature was carried out. A hierarchical cluster analysis using the data obtained in this study and those reported in the literature revealed four clearly defined clusters based on the relative concentrations of the major components.


Author(s):  
Bruno Antunes Contrucci ◽  
Rosimeire Silva ◽  
Roberto Andreani Junior ◽  
Dora Inés Kozusny-Andreani

Os óleos essenciais são produtos do metabolismo secundário de plantas e são conhecidos por possuir diferentes propriedades biológicas, incluindo atividades antimicrobianas, podendo agir como antibacteriano, antifúngico e antiviral. Objetivou-se nesta pesquisa avaliar a atividade antibacteriana de óleos essenciais sobre cepas de Escherichia coli e Pseudomonas aeruginosa isoladas de alimentos. Foram utilizados os óleos de Eucalyptus globolus (eucalipto comum), Prunus amygdalus (amêndoa), Cymbopongon nardus (citronela), Rosmarinus officinalis (alecrim), Cinnamomum zeylanicum (caneleira), Cymbopogon citratus (capim limão), Citrus limon (limão), Caryophyllus aromaticus (cravo). Foram utilizadas dez linhagens de E. coli e dez de P. aeuriginosa. Para determinação da Concentração Inibitória Mínima (CIM) dos óleos essenciais foi utilizado o método de microdiluição em placas de 96 poços. As concentrações bactericidas mínimas (CBM) foram determinadas a partir dos resultados da CIM. Designou-se como CBM a concentração mínima em que não ocorreu crescimento bacteriano. Verificou-se  que todos os óleos essenciais apresentaram atividade antibacteriana, no entanto os óleos de E. gobulus e R. officinalis foram mais ativos frente a E. coli (CBM=3,13%), e menos eficazes frente a P. aeruginosa (CBM=25%), enquanto que o de C. nardus apresentou atividade biológica frente a P. aeruginosa na concentração de 6,25%. A atividade antimicrobiana dos óleos essenciais testados aponta a possibilidade de desenvolver agentes antimicrobianos eficientes e de baixo custo no controle de E. coli e P. aeruginosa.  Palavras-chave: Escherichia coli.  Pseudomonas aeruginosa. Plantas Medicinais. Controle.AbstractEssential oils are secondary plant metabolism produtcts and are known to have different biological properties, including antimicrobial activities,which may act as antibacterial, antifungal and antiviral. The objective of this research was to evaluate the essential oils antibacterial activityon strains of Escherichia coli and Pseudomonas aeruginosa isolated from food. Essential oils Eucalyptus globolus, Prunus amygdalus, Cymbopongon nardus, Rosmarinus officinalis, Cinnamomum zeylanicum, Cymbopogon citratus, Citrus limon, Caryophyllus aromaticus wereused. Ten strains of E. coli and ten of P. aeuriginosa were used. To determine the Minimum Inhibitory Concentration (MIC) of the essentialoils, the 96-well plate microdilution method was used. Minimum bactericidal concentrations (MBC) were determined from MIC results. CBM was the minimum concentration at which no bacterial growth occurred. It was verified that all the essential oils presented antibacterial activity, however the oils of Eucaliptus gobulus and Rosmarinus officinalis were more active against E. coli (MBC = 3.13%), and less effective against P. aeruginosa (CBM = 25 %), while that of Cymbopongon nardus showed biological activity against P. aeruginosa at 6.25% concentration. The antimicrobial activity of the tested essential oils indicates the possibility of developing efficient and low cost antimicrobial agents in the control of E. coli and P. aeruginosa.Keywords: Escherichia coli. Pseudomonas aeruginosa. Medicinal Plants. Control.


Author(s):  
Anderson Clayton Da Silva ◽  
Raiza Iacuzio ◽  
Talita Junia Da Silva Cândido ◽  
Marjory Xavier Rodrigues ◽  
Nathália Cristina Cirone Silva

Patógenos alimentares resistentes a antimicrobianos são uma preocupação de saúde pública ao redor do mundo. A resistência a antibióticos está sendo cada vez mais comum entre cepas isoladas de alimentos, assim, alternativas aos antibióticos estão sendo propostas. Óleos essenciais vêm sendo estudados para a aplicação na indústria de alimentos por possuírem atividade antimicrobiana e antioxidante. Desse modo, este trabalho teve como objetivo identificar o perfil de resistência antimicrobiana de Salmonella spp., Staphylococcus aureus e Escherichia coli isolados de frangos empregando diferentes antibióticos e os óleos essenciais de alecrim (Rosmarinus officinalis), capim-limão (Cymbopogon citratus) e pimenta preta (Piper nigrum). Métodos convencionais de microbiologia foram utilizados para a obtenção dos isolados bacterianos, método de disco-difusão foi empregado para identificar a resistência a antibióticos, ensaios de microplaca de resazurina foram realizados para identificar a concentração inibitória mínima (CIM) de óleos essenciais, e então a concentração bactericida mínima (CBM) foi estabelecida a partir da CIM desenvolvendo a técnica da micro-gota. Frequência, média, desvio-padrão, análise de variância e teste de Tukey foram calculados para a análise dos resultados. Destacam-se entre os resultados obtidos a frequência de carcaças de frangos contaminadas por Escherichia coli, Staphylococcus aureus e Salmonella spp., 70%, 40%, e 25%, respectivamente, sendo que a resistência dos isolados a um ou mais antibióticos foi detectada em 90,9%, 66,6% e 55,6% dos isolados de E. coli, Salmonella spp. e S. aureus, respectivamente. Em adição, a multiresistência foi amplamente identificada. Quanto aos resultados obtidos para as análises de Concentração Inibitória Mínima dos óleos essenciais analisados, foi possível observar um melhor desempenho dos óleos essenciais de alecrim e capim limão, respectivamente, contudo sem diferença significativa entre as amostras. Os resultados reforçam a preocupação com a disseminação de cepas resistentes a antimicrobianos e a necessidade do desenvolvimento ou melhoramento de alternativas ao uso de antibióticos.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Wang ◽  
Liang Wang ◽  
Jin Tan ◽  
Rong Li ◽  
Zi-Tao Jiang ◽  
...  

Ethnopharmacological Relevance: Pepper essential oils have potential immunomodulatory, anti-tumor, and anti-cancer activities. Pepper exhibits the potential to prevent or attenuate carcinogenesis as therapeutic tools. However, the related mechanism remains unelucidated.Aim of the Study: The present study aims to provide reasonable information for the explanation of the dissimilarity of the essential oils from white (WPEO) and black pepper (BPEO).Materials and Methods: WPEO, BPEO, and their single active component, as well as synthetic antioxidants, were compared by the cell model methods and chemical methods, including intracellular antioxidant activity (CAA), total antioxidant activities (TAA), superoxide radical (SR), hydroxyl radical (HR), DPPH radical (DR) scavenging activities and inhibition ability of lipoprotein lipid peroxidation (ILLP).Results: The median effective concentration (EC50) values (mg/mL) of the WPEO and BPEO of SR, HR, DR, and ILLP were 0.437 and 0.327, 0.486 and 0.204, 7.332 and 6.348, 0.688, and 0.624 mg/mL, respectively. The CAA units of WPEO and BPEO were 50.644 and 54.806, respectively. CAA, DR, and TAA of BPEO were significantly higher than those of WPEO (p < 0.05). The BPEO and WPEO can be differentiated as the former have higher correlations with 3-carene, α-pinene, β-pinene, and limonene while the latter has a higher caryophyllene correlation. The WPEO and BPEO show a good intracellular scavenging ability of reactive oxygen species in HeLa cells.Conclusion: Generally, pepper oil has stronger activities than single components, indicating that pepper is a broad-spectrum natural antioxidant.


2017 ◽  
Vol 149 (5) ◽  
pp. 639-648 ◽  
Author(s):  
Jatinder S. Sangha ◽  
Tess Astatkie ◽  
G. Christopher Cutler

AbstractAlternatives to synthetic insecticides are desirable for management of diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Plutellidae), an insect pest of global importance. Many essential oils derived from aromatic plants have demonstrated toxicity and behaviour altering effects on insect pests, and are considered low-risk alternatives to synthetic insecticides. We conducted laboratory experiments to determine the biological activity of several low-cost, commercially available essential oils against P. xylostella. Experiments testing ovicidal effects, larvicidal effects, larval feeding deterrence, and adult oviposition deterrence were done with essential oils derived from Artemisia abrotanum Linnaeus (Asteraceae), balsam fir (Abies balsamea Linnaeus (Pinaceae)), black pepper (Piper nigrum Linnaeus (Piperaceae)), eucalyptus (Eucalyptus polybractea (Baker) (Myrtaceae)), garlic (Allium sativum Linnaeus (Amaryllidaceae)), rosewood (a blend of different oil constituents), tansy (Tanacetum vulgare Linnaeus (Asteraceae)), and thyme (Thymus zygis Linnaeus (Lamiaceae)), using concentrations of 1, 2.5, and 5% v/v. Although all essential oils had some level of bioactivity against certain P. xylostella life stages, essential oils from garlic, rosewood, and thyme were most effective overall, demonstrating significant ovicidal and larvicidal activity, as well as deterrent effects on larval feeding and settling behaviour, and adult oviposition. Although variable phytotoxicity was observed with essential oils at 2.5% and 5% v/v concentrations, the results suggest that rosewood, garlic, and thyme essential oils have potential in management of P. xylostella.


2016 ◽  
Vol 20 (2) ◽  
pp. 39-52 ◽  
Author(s):  
Desislava Teneva ◽  
Zapryana Denkova ◽  
Bogdan Goranov ◽  
Rositsa Denkova ◽  
Georgi Kostov ◽  
...  

Abstract Four popular spices black pepper (Piper nigrum L.), cumin (Cuminum cyminum L.), coriander (Coriandrum sativum L.) and cardamom (Elettaria cardamomum) were analyzed for their oil composition by GC-MS. Thirty compounds were identified in the black pepper oil and the main components were β-caryophyllene (20.225 %), sabinene (18.054 %), limonene (16.924 %), α-pinene (9.171 %) and α-phellandrene (5.968 %). Twenty five compounds were identified in the cumin oil – cuminaldehyde (30.834 %), 3-caren-10-al (17.223 %), β-pinene (14.837 %), γ–terpinene (11.928 %), 2-caren-10-al (8.228 %) and pcymene (6.429 %). Twenty nine compounds were identified in the coriander oil – β-linalool (58.141 %), α-pinene (8.731 %), γ-terpinene (6.347 %) and p-cymene (5.227 %). Twenty nine compounds were identified in the cardamom oil – α-terpinyl acetate (39.032 %), eucalyptol (31.534 %), β-linalool (4.829 %), sabinene (4.308 %) and α-terpineol (4.127 %). The antimicrobial activity of essential oils against pathogenic (Escherichia coli ATCC 25922, Escherichia coli ATCC 8739, Salmonella sp. (clinical isolate), Staphylococcus aureus ATCC 6538P, Proteus vulgaris G) microorganisms by disc-diffusion method was examined. Gram-positive bacteria were more sensitive to the oils (inhibition zones being between 8 and 12.5 mm) and the minimum inhibitory concentration was more than 600 ppm; Gram-negative bacteria were less sensitive. The obtained essential oils are suitable for use as biopreservative agents.


Sign in / Sign up

Export Citation Format

Share Document