scholarly journals Fabrication of Concentrated Palm Olein-Based Diacylglycerol Oil–Soybean Oil Blend Oil-In-Water Emulsion: In-Depth Study of the Rheological Properties and Storage Stability

Foods ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 877
Author(s):  
Siou Pei Ng ◽  
Yih Phing Khor ◽  
Hong Kwong Lim ◽  
Oi Ming Lai ◽  
Yong Wang ◽  
...  

The present study focused on investigating the storage stability of oil-in-water (O/W) emulsions with high oil volume fractions prepared with palm olein-based diacylglycerol oil (POL-DAG)/soybean oil (SBO) blends at 25 °C. The incorporation of different ratios of oil blends significantly influenced (p < 0.05) the texture, color, droplet size distribution, and rheological parameters of the emulsions. Only emulsions incorporated with 10% to 20% POL-DAG in oil phase exhibited pseudoplastic behavior that fitted the Power Law model well. Furthermore, the O/W emulsions prepared with POL-DAG/SBO blends exhibited elastic properties, with G’ higher than G”. During storage, the emulsion was found to be less solid-like with the increase in tan δ values. All emulsions produced with POL-DAG/SBO blends also showed thixotropic behavior. Optical microscopy revealed that the POL-DAG incorporation above 40% caused aggregated droplets to coalesce and flocculate and, thus, larger droplet sizes were observed. The current results demonstrated that the 20% POL-DAG substituted emulsion was more stable than the control emulsion. The valuable insights gained from this study would be able to generate a lot more possible applications using POL-DAG, which could further sustain the competitiveness of the palm oil industry.

2021 ◽  
Vol 13 (3) ◽  
pp. 820-829
Author(s):  
Meenakshi Garg ◽  
Surabhi Wason ◽  
Prem Lata Meena ◽  
Rajni Chopra ◽  
Susmita Dey Sadhu ◽  
...  

Most common cooking oil, such as soybean oil, can not be used for high-temperature applications, as they are highly susceptible to oxidation. Sesame seed oil rich in natural antioxidants provides high oxidative stability. Therefore, blending sesame oil with soybean oil offer improved oxidative stability. This study aims to determine the effect of frying on the physicochemical properties of sesame and soyabean oil blend. Soybean oil (SO) was blended with sesame seed oil (SSO) in the ratio of A-40:60, B-60:40 and C-50:50 so as to enhance its market acceptability. The changes occurring in soybean and sesame seed oil blend during repeated frying cycles were monitored. The parameters assessed were: Refractive index, specific gravity, viscosity, saponification value, free fatty acid (FFA) , peroxide value, and acid value. Fresh and fried oil blends were also characterised by Fourier Transform Infrared Spectroscopy (FTIR). No significant changes were observed for refractive index and specific gravity values in oil blends. Viscosity of blend B blend was the least, making it desirable for cooking purposes. However, FFA, acid value and peroxide value increased after each frying cycle. The increment of FFA and AV was found low for blend A (10% and 10%,) than blend B (27%,13%) and blend C (13%,13%). The peroxide value of all samples was within the acceptable range. The results of the present study definitely indicated that blending sesame oil with soybean oil could produce an oil blend which is economically feasible and provide desirable physicochemical properties for cooking purposes.


OCL ◽  
2022 ◽  
Vol 29 ◽  
pp. 2
Author(s):  
Elina Hishamuddin ◽  
Mei Huey Saw

Incorporation of oils from non-conventional sources into palm olein through the blending process generates a sustainable source of novel oleins with improved physicochemical and functional properties. The objective of this study was to evaluate the effects of blending winged bean (Psophocarpus tetragonolobus) seed oil (WBSO) and palm olein (POo) on the physicochemical properties of the blends. Blends of WBSO (25, 50 and 75% w/w) with POo were prepared and changes in fatty acid (FA) and triacylglycerol (TAG) compositions, iodine value (IV), cloud point and thermal behaviour were studied. Reductions in palmitic (C16:0) and oleic (C18:1) acids with concomitant increases in linoleic (C18:2) and behenic (C22:0) acids were observed as the amount of WBSO increased in the blends. Blending WBSO and POo at 75:25 increased the unsaturated FA content from 56% in palm olein to 64% in the blend, producing the highest IV of 70.5 g I2/100g. At higher WBSO ratios, triunsaturated and diunsaturated TAG species within the blends increased while disaturated TAG species decreased. The lowest cloud point (8.8 °C) was obtained in the oil blend containing 50% WBSO, while the cloud point further increased with increasing amount of WBSO in the blends. This was possibly attributed to increased trisaturated TAG with very long-chained saturated FA (C20 to C24) inherently present in WBSO within the blends. Thermal behaviour analysis by differential scanning calorimetry of the oil blends showed higher onset temperatures for crystallisation with increasing proportions of WBSO in POo, with melting thermograms correspondingly showing decreasing onset melting temperatures. These findings showed that blending WBSO with POo enhanced the physicochemical characteristics of the final oil blends, resulting in higher unsaturation levels and improved cloudiness resistance.


Sign in / Sign up

Export Citation Format

Share Document