scholarly journals Microbial Dynamics between Yeasts and Acetic Acid Bacteria in Kombucha: Impacts on the Chemical Composition of the Beverage

Foods ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 963 ◽  
Author(s):  
Thierry Tran ◽  
Cosette Grandvalet ◽  
François Verdier ◽  
Antoine Martin ◽  
Hervé Alexandre ◽  
...  

Kombucha is a traditional low-alcoholic beverage made from sugared tea and transformed by a complex microbial consortium including yeasts and acetic acid bacteria (AAB). To study the microbial interactions and their impact on the chemical composition of the beverage, an experimental design with nine couples associating one yeast strain and one AAB strain isolated from original black tea kombucha was set up. Three yeast strains belonging to the genera Brettanomyces, Hanseniaspora, and Saccharomyces and three strains of Acetobacter and Komagataeibacter species were chosen. Monocultures in sugared tea were analyzed to determine their individual microbial behaviors. Then, cultivation of the original kombucha consortium and cocultures in sugared tea were compared to determine the interactive microbial effects during successive phases in open and closed incubation conditions. The results highlight the main impact of yeast metabolism on the product’s chemical composition and the secondary impact of bacterial species on the composition in organic acids. The uncovered microbial interactions can be explained by different strategies for the utilization of sucrose. Yeasts and AAB unable to perform efficient sucrose hydrolysis rely on yeasts with high invertase activity to access released monosaccharides. Moreover, the presence of AAB rerouted the metabolism of Saccharomyces cerevisiae towards higher invertase and fermentative activities.

2017 ◽  
Vol 866 ◽  
pp. 61-64
Author(s):  
Duongruitai Nicomrat

Fresh fruit vinegar fermentation is well known for the activities of diverse groups of microorganisms at two stages of the fermentation process. Their species diversity depend on the raw materials fermented. In the study, at the first step of high sugar production, less culturable acetic acid bacterial species but more Aspergillus spp. and yeasts, non-Saccharomyces were detected. At the end, the vinegar production step, the fermented broth showed only dominant acetic acid bacteria. In the study, yeasts and fungi were isolated and inoculated to the juice. The results showed that these consortium could help increase high alcohol and later more acetic acid production when compared with the control fruit vinegar fermentation.


2005 ◽  
Vol 59 (9-10) ◽  
pp. 248-253 ◽  
Author(s):  
Dragoljub Cvetkovic ◽  
Sinisa Markov ◽  
Aleksandra Velicanski

Kombucha is a beverage with special therapeutic properties produced by the metabolic activity of yeasts and acetic acid bacteria in sweetened black tea (traditional cultivation medium). The antimicrobial activity of kombucha (for consumption) made from black tea and Rtanj tea, as well as particular control samples, was examined by the modified disc diffusion method. Salmonella enteritidis, Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa Staphylococcus aureus, Bacillus sp., Sarcina lutea, Penicillium aurantiogriseum, Aspergilus niger, Aspergilus flavus, Rhodotorula sp. Candida pseudotropi-calis and Saccharomyces cerevisae have been used as test organisms. Acetic acid and kombucha samples show significant antimicrobial activity against all bacteria except Sarcina lutea. The other control samples (neutralized kombucha, tea and a "model sistem") show less bacteriostatic activity. Kombucha and acetic acid solution show borderline inhibitory activity against some moulds, while was no activity against yeasts.


1998 ◽  
Vol 64 (4) ◽  
pp. 1477-1483 ◽  
Author(s):  
Rosane Freitas Schwan

ABSTRACT Cocoa fermentations were performed in wooden boxes under the following four experimental regimens: beans naturally fermented with wild microflora; aseptically prepared beans with no inoculum; and beans inoculated with a defined cocktail containing microorganisms at a suitable concentration either at zero time or by using phased additions at appropriate times. The cocktail used consisted of a yeast,Saccharomyces cerevisiae var. chevalieri, two lactic acid bacterial species, Lactobacillus lactis andLactobacillus plantarum, and two acetic acid bacterial species, Acetobacter aceti and Gluconobacter oxydans subsp. suboxydans. The parameters measured were cell counts (for yeasts, filamentous fungi, lactic acid bacteria, acetic acid bacteria, and spore formers, including reisolation and identification of all residual cell types), sugar, ethanol, acetic acid, and lactic acid contents (and contents of other organic acids), pH, and temperature. A cut test for bean quality and a sensorial analysis of chocolate made from the beans were also performed. The natural fermentation mimicked exactly the conditions in 800-kg boxes on farms. The aseptic box remained largely free of microflora throughout the study, and no significant biochemical changes occurred. With the zero-time inoculum the fermentation was almost identical to the natural fermentation. The fermentation with the phased-addition inoculum was similar, but many changes in parameters were slower and less pronounced, which led to a slightly poorer end product. The data show that the nearly 50 common species of microorganisms found in natural fermentations can be replaced by a judicious selection and concentration of members of each physiological group. This is the first report of successful use of a defined, mixed starter culture in such a complex fermentation, and it should lead to chocolate of more reliable and better quality.


2011 ◽  
Vol 77 (21) ◽  
pp. 7698-7714 ◽  
Author(s):  
Zoi Papalexandratou ◽  
Gwen Falony ◽  
Edwina Romanens ◽  
Juan Carlos Jimenez ◽  
Freddy Amores ◽  
...  

ABSTRACTTraditional fermentations of the local Ecuadorian cocoa type Nacional, with its fine flavor, are carried out in boxes and on platforms for a short time. A multiphasic approach, encompassing culture-dependent and -independent microbiological analyses of fermenting cocoa pulp-bean samples, metabolite target analyses of both cocoa pulp and beans, and sensory analysis of chocolates produced from the respective fermented dry beans, was applied for the investigation of the influence of these fermentation practices on the yeast and bacterial species diversity and community dynamics during cocoa bean fermentation. A wide microbial species diversity was found during the first 3 days of all fermentations carried out. The prevailing ethanol-producing yeast species werePichia kudriavzeviiandPichia manshurica, followed bySaccharomyces cerevisiae. Leuconostoc pseudomesenteroides(glucose and fructose fermenting),Fructobacillus tropaeoli-like (fructose fermenting), andLactobacillus fermentum(citrate converting, mannitol producing) represented the main lactic acid bacterial species in the fermentations studied, resulting in intensive heterolactate metabolism of the pulp substrates.Tatumella saanichensisandTatumella punctatawere among the members of the familyEnterobacteriaceaepresent during the initial phase of the cocoa bean fermentations and could be responsible for the production of gluconic acid in some cases. Also, a potential new yeast species was isolated, namely,Candida sorbosivorans-like. Acetic acid bacteria, whose main representative wasAcetobacter pasteurianus, generally appeared later during fermentation and oxidized ethanol to acetic acid. However, acetic acid bacteria were not always present during the main course of the platform fermentations. All of the data taken together indicated that short box and platform fermentation methods caused incomplete fermentation, which had a serious impact on the quality of the fermented dry cocoa beans.


Food Research ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 331-339
Author(s):  
J.G.B. Peralta ◽  
F.B. Elegado ◽  
J.F. Simbahan ◽  
I.G. Pajares ◽  
E.I. Dizon

The succession of the dominant microbial population during cacao fermentation with or without adjunct inoculation of yeast and lactic acid bacteria (LAB) were monitored on a laboratory scale using culture-dependent and culture-independent methods. Yeasts and acetic acid bacteria (AAB) population throughout a five-day fermentation process showed no significant differences but the LAB population increased through adjunct inoculation. Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) identification method showed the dominance of only Lactobacillus plantarum, one of the species used as the adjunct inoculum, which resulted in higher lactic acid production. On the other hand, Acetobacter spp. and Gluconobacter spp. were markedly observed in the spontaneously fermented set-up resulting in increased acetic acid production, significantly different (p>0.05) at three to five days of fermentation. LAB and yeast inoculation resulted in a more desirable temperature and pH of the fermenting mash which may result in better product quality.


2022 ◽  
Vol 951 (1) ◽  
pp. 012076
Author(s):  
I Sulaiman ◽  
D Hasni

Abstract Coffee is a non-alcoholic beverage that is consumed globally due to its specific flavour and functional properties. Nowadays coffee is diversified based on its coffee varieties, brewing methods, and bean processing techniques. Wine coffee is a commercial name for fermented coffee, a new coffee diversification product. Wine coffee is produced by fermenting coffee cherries for 30 to 60 days. As a new product, the process is not well studied. This research aims to explore the microorganisms’ activity and its profile growth during 30 days of fermentation. The documentation of pH and temperature, and microbial sampling during coffee cherry fermentation were conducted seven times, started at 0 days; 2 days; 4 days; 6 days; 8 days; 10 days; 12 days; 14 days; 16 days; 20 and 30 days. The results showed that pH decreases and temperature increases during fermentation. pH started from 5.0 and down to 3.9 when fermentation is terminated after 30 days, whilst the temperature slightly changes from 25°C to 30°C. The microorganism’s population shows the presence of yeast, lactic acid (LAB) and acetic acid bacteria (AAB) in wine coffee production. The yeast population increases in the mid fermentation as the cherries are damaged and provide suitable nutrition for the yeast. LAB also co-exists at a similar stage. Further research should be done, especially to understand the interaction mechanism between yeast and yeast, yeast and LAB, and yeast and AAB.


1964 ◽  
Vol 28 (2) ◽  
pp. 164-180 ◽  
Author(s):  
J. De Ley ◽  
K. Kersters

Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 815
Author(s):  
Janja Trček ◽  
Iztok Dogsa ◽  
Tomaž Accetto ◽  
David Stopar

Bacteria produce a variety of multifunctional polysaccharides, including structural, intracellular, and extracellular polysaccharides. They are attractive for the industrial sector due to their natural origin, sustainability, biodegradability, low toxicity, stability, unique viscoelastic properties, stable cost, and supply. When incorporated into different matrices, they may control emulsification, stabilization, crystallization, water release, and encapsulation. Acetan is an important extracellular water-soluble polysaccharide produced mainly by bacterial species of the genera Komagataeibacter and Acetobacter. Since its original description in Komagataeibacter xylinus, acetan-like polysaccharides have also been described in other species of acetic acid bacteria. Our knowledge on chemical composition of different acetan-like polysaccharides, their viscoelasticity, and the genetic basis for their production has expanded during the last years. Here, we review data on acetan biosynthesis, its molecular structure, genetic organization, and mechanical properties. In addition, we have performed an extended bioinformatic analysis on acetan-like polysaccharide genetic clusters in the genomes of Komagataeibacter and Acetobacter species. The analysis revealed for the first time a second acetan-like polysaccharide genetic cluster, that is widespread in both genera. All species of the Komagataeibacter possess at least one acetan genetic cluster, while it is present in only one third of the Acetobacter species surveyed.


2021 ◽  
Vol 85 (5) ◽  
pp. 1243-1251
Author(s):  
Nami Matsumoto ◽  
Naoki Osumi ◽  
Minenosuke Matsutani ◽  
Theerisara Phathanathavorn ◽  
Naoya Kataoka ◽  
...  

ABSTRACT Thermotolerant microorganisms are useful for high-temperature fermentation. Several thermally adapted strains were previously obtained from Acetobacter pasteurianus in a nutrient-rich culture medium, while these adapted strains could not grow well at high temperature in the nutrient-poor practical culture medium, “rice moromi.” In this study, A. pasteurianus K-1034 originally capable of performing acetic acid fermentation in rice moromi was thermally adapted by experimental evolution using a “pseudo” rice moromi culture. The adapted strains thus obtained were confirmed to grow well in such the nutrient-poor media in flask or jar-fermentor culture up to 40 or 39 °C; the mutation sites of the strains were also determined. The high-temperature fermentation ability was also shown to be comparable with a low-nutrient adapted strain previously obtained. Using the practical fermentation system, “Acetofermenter,” acetic acid production was compared in the moromi culture; the results showed that the adapted strains efficiently perform practical vinegar production under high-temperature conditions.


Author(s):  
Philipp Moritz Fricke ◽  
Angelika Klemm ◽  
Michael Bott ◽  
Tino Polen

Abstract Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an l-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. Key points • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.


Sign in / Sign up

Export Citation Format

Share Document