scholarly journals Physicochemical Fingerprint of “Pera Rocha do Oeste”. A PDO Pear Native from Portugal

Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1209
Author(s):  
Soraia I. Pedro ◽  
Elisabete Coelho ◽  
Fátima Peres ◽  
Ana Machado ◽  
António M. Rodrigues ◽  
...  

“Pera Rocha do Oeste” is a pear (Pyrus communis L.) variety native from Portugal with a Protected Designation of Origin (PDO). To supply the world market for almost all the year, the fruits are kept under controlled storage. This study aims to identify which classical physicochemical parameters (colour, total soluble solids (TSS), pH, acidity, ripening index, firmness, vitamin C, total phenols, protein, lipids, fibre, ash, other compounds including carbohydrates, and energy) could be fingerprint markers of PDO “Pera Rocha do Oeste”. For this purpose, a data set constituting fruits from the same size, harvested from three orchards of the most representative PDO locations and stored in refrigerated conditions for 2 or 5 months at atmospheric conditions or for 5 months under a modified atmosphere, were selected. To validate the fingerprint parameters selected with the first set, an external data set was used with pears from five PDO orchards stored under different refrigerated conditions. Near infrared (NIR) spectroscopy was used as a complementary tool to assess the global variability of the samples. The lightness of the pulp; the b* CIELab coordinate of the pulp and peel; and the pulp TSS, pH, firmness, and total phenols, due to their lower variability, are proposed as fingerprint markers of this pear.

Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1190 ◽  
Author(s):  
Jannat Yasmin ◽  
Mohammed Raju Ahmed ◽  
Santosh Lohumi ◽  
Collins Wakholi ◽  
Moon Kim ◽  
...  

Viability analysis of stored seeds before sowing has a great importance as plant seeds lose their viability when they exposed to long term storage. In this study, the potential of Fourier transform near infrared spectroscopy (FT-NIR) was investigated to discriminate between viable and non-viable triploid watermelon seeds of three different varieties stored for four years (natural aging) in controlled conditions. Because of the thick seed-coat of triploid watermelon seeds, penetration depth of FT-NIR light source was first confirmed to ensure seed embryo spectra can be collected effectively. The collected spectral data were divided into viable and nonviable groups after the viability being confirmed by conducting a standard germination test. The obtained results showed that the developed partial least discriminant analysis (PLS-DA) model had high classification accuracy where the dataset was made after mixing three different varieties of watermelon seeds. Finally, developed model was evaluated with an external data set (collected at different time) of hundred samples selected randomly from three varieties. The results yield a good classification accuracy for both viable (87.7%) and nonviable seeds (82%), thus the developed model can be considered as a “general model” since it can be applied to three different varieties of seeds and data collected at different time.


2018 ◽  
Vol 12 (1) ◽  
pp. 95-110 ◽  
Author(s):  
Estela Kamile Gelinski ◽  
Fabiane Hamerski ◽  
Marcos Lúcio Corazza ◽  
Alexandre Ferreira Santos

Objective: Biodiesel is a renewable fuel considered as the main substitute for fossil fuels. Its industrial production is mainly made by the transesterification reaction. In most processes, information on the production of biodiesel is essentially done by off-line measurements. Methods: However, for the purpose of control, where online monitoring of biodiesel conversion is required, this is not a satisfactory approach. An alternative technique to the online quantification of conversion is the near infrared (NIR) spectroscopy, which is fast and accurate. In this work, models for biodiesel reactions monitoring using NIR spectroscopy were developed based on the ester content during alkali-catalyzed transesterification reaction between soybean oil and ethanol. Gas chromatography with flame ionization detection was employed as the reference method for quantification. FT-NIR spectra were acquired with a transflectance probe. The models were developed using Partial Least Squares (PLS) regression with synthetic samples at room temperature simulating reaction composition for different ethanol to oil molar ratios and conversions. Model predictions were then validated online for reactions performed with ethanol to oil molar ratios of 6 and 9 at 55ºC. Standard errors of prediction of external data were equal to 3.12%, hence close to the experimental error of the reference technique (2.78%), showing that even without using data from a monitored reaction to perform calibration, proper on-line predictions were provided during transesterification runs. Results: Additionally, it is shown that PLS models and NIR spectra of few samples can be combined to accurately predict the glycerol contents of the medium, making the NIR spectroscopy a powerful tool for biodiesel production monitoring.


2021 ◽  
Author(s):  
Hayfa Zayani ◽  
Youssef Fouad ◽  
Didier Michot ◽  
Zeineb Kassouk ◽  
Zohra Lili-Chabaane ◽  
...  

<p>Visible-Near Infrared (Vis-NIR) spectroscopy has proven its efficiency in predicting several soil properties such as soil organic carbon (SOC) content. In this preliminary study, we explored the ability of Vis-NIR to assess the temporal evolution of SOC content. Soil samples were collected in a watershed (ORE AgrHys), located in Brittany (Western France). Two sampling campaigns were carried out 5 years apart: in 2013, 198 soil samples were collected respectively at two depths (0-15 and 15-25 cm) over an area of 1200 ha including different land use and land cover; in 2018, 111 sampling points out of 198 of 2013 were selected and soil samples were collected from the same two depths. Whole samples were analyzed for their SOC content and were scanned for their reflectance spectrum. Spectral information was acquired from samples sieved at 2 mm fraction and oven dried at 40°C, 24h prior to spectra acquisition, with a full range Vis-NIR spectroradiometer ASD Fieldspec®3. Data set of 2013 was used to calibrate the SOC content prediction model by the mean of Partial Least Squares Regression (PLSR). Data set of 2018 was therefore used as test set. Our results showed that the variation ∆SOC<sub>obs</sub><sub></sub>obtained from observed values in 2013 and 2018 (∆SOC<sub>obs</sub> = Observed SOC (2018) - Observed SOC (2013)) is ranging from 0.1 to 25.9 g/kg. Moreover, our results showed that the prediction performance of the calibrated model was improved by including 11 spectra of 2018 in the 2013 calibration data set (R²= 0.87, RMSE = 5.1 g/kg and RPD = 1.92). Furthermore, the comparison of predicted and observed ∆SOC between 2018 and 2013 showed that 69% of the variations were of the same sign, either positive or negative. For the remaining 31%, the variations were of opposite signs but concerned mainly samples for which ∆SOCobs is less than 1,5 g/kg. These results reveal that Vis-NIR spectroscopy was potentially appropriate to detect variations of SOC content and are encouraging to further explore Vis-NIR spectroscopy to detect changes in soil carbon stocks.</p>


Holzforschung ◽  
2003 ◽  
Vol 57 (5) ◽  
pp. 527-532 ◽  
Author(s):  
L. R. Schimleck ◽  
Y. Yazaki

Summary The analysis of two sets of Acacia mearnsii De Wild (Black Wattle) samples by near infrared (NIR) spectroscopy is reported. Set 1 samples were characterised in terms of hot water extractives, Stiasny value and polyflavanoid content. Set 2 samples were characterised by nine different parameters, including tannin content. NIR spectra were obtained from the milled bark of all samples and calibrations developed for each parameter. Calibrations developed for hot water extractives and polyflavanoid content (set 1) gave very good coefficients of determination (R2) and performed well in prediction. Set 2 calibrations were generally good with total and soluble solids, tannin content, Stiasny value-2 and UV-2, all having R2 greater than 0.8. Owing to the small number of set 2 samples, no predictions were made using the calibrations. The strong relationships obtained for many parameters in this study indicates that NIR spectroscopy has considerable potential for the rapid assessment of the quality of extractives in A. mearnsii bark.


2004 ◽  
Vol 34 (1) ◽  
pp. 76-84 ◽  
Author(s):  
Mulualem Tigabu ◽  
Per Christer Odén ◽  
Tong Yun Shen

The use of near-infrared (NIR) spectroscopy to discriminate between uninfested seeds of Picea abies (L.) Karst and seeds infested with Plemeliella abietina Seitn (Hymenoptera, Torymidae) larva is sensitive to seed origin and year of collection. Five seed lots collected during different years from Sweden, Finland, and Belarus were used in this study. Initially, seeds were classified as infested or uninfested with X-radiography, and then, NIR spectra from single seeds were collected with a NIR spectrometer from 1100 to 2498 nm with a resolution of 2 nm. Discriminant models were derived by partial least squares regression using raw and orthogonal signal corrected spectra (OSC). The resulting OSC model developed on a pooled data set was more robust than the raw model and resulted in 100% classification accuracy. Once irrelevant spectral variations were removed by using OSC pretreatment, single-lot calibration models resulted in similar classification rates for the new samples irrespective of origin and year of collection. Dis criminant analyses performed with selected NIR absorption bands also gave nearly 100% classification rate for new samples. The origin of spectral differences between infested and uninfested seeds was attributed to storage lipids and proteins that were completely depleted in the former by the feeding larva.


2006 ◽  
Vol 57 (4) ◽  
pp. 403 ◽  
Author(s):  
Robert L. Long ◽  
Kerry B. Walsh

The imposition of a minimum total soluble solids (TSS) value as a quality standard for orange-flesh netted melon fruit (Cucumis melo L. reticulatus group) requires either a batch sampling procedure (i.e. the estimation of the mean and standard deviation of a population), or the individual assessment of fruit [e.g. using a non-destructive procedure such as near infrared (NIR) spectroscopy]. Several potential limitations to the NIR assessment of fruit, including the variation in TSS within fruit and the effect of fruit storage conditions on the robustness of calibration models, were considered in this study. Outer mesocarp TSS was 3 TSS units higher at the stylar end of the fruit compared with the stem end, and the TSS of inner mesocarp was higher than outer tissue and more uniform across spatial positions. The linear relationship between the outer 10 mm and the subsequent middle 10 mm of tissue varied with fruit maturity [e.g. 42 days before harvest (DBH), r 2 = 0.8; 13 DBH, r 2 = 0.4; 0 DBH, r 2 = 0.7], and with cultivars (at fruit maturity, Eastern Star 2001 r 2 = 0.88; Malibu 2001 r 2 = 0.59). This relationship notably affected NIR calibration performance (e.g. based on inner mesocarp TSS; R c 2 = 0.80, root mean standard error of cross-validation (RMSECV) = 0.65, and R c 2 = 0.41, RMSECV = 0.88 for mature Eastern Star and Malibu fruit, respectively). Cold storage of fruit (0–14 days at 5°C) did not affect NIR model performance. Model performance was equivalent when based on either that part of the fruit in contact with the ground or equatorial positions; however, it was improved when based on the stylar end of the fruit.


2008 ◽  
Vol 18 (3) ◽  
pp. 410-416 ◽  
Author(s):  
Stephen R. Delwiche ◽  
Weena Mekwatanakarn ◽  
Chien Y. Wang

A rapid, reliable, and nondestructive method for quality evaluation of mango (Magnifera indica) fruit is important to the mango industry for international trade. The objective of this study was to determine the potential of near-infrared (NIR) spectroscopy to predict soluble solids content (SSC) and individual and combined concentrations of sucrose, glucose, and fructose nondestructively in mango. Mature mangoes at two different temperatures (15 °C and 20 °C) were measured by NIR interactance (750–1088 nm wavelength region analyzed) over an 11-day period, starting when the fruit were underripe and extending to a few days past optimal ripeness. Partial least squares regression was used to develop models for SSC, individual sugar concentration, and the sum of the concentrations of the three sugars. Such analyses yielded calibration equations with R2 = 0.77 to 0.88 (SSC), 0.75 (sucrose), 0.67 (glucose), 0.70 (fructose), and 0.82 (sum); standard error of calibration = 0.56 to 0.90 (SSC), 10.0 (sucrose), 0.9 (glucose), 4.5 (fructose), and 10.4 (sum); and standard error of cross-validation = 0.93 to 1.10 (SSC), 15.6 (sucrose), 1.4 (glucose), 6.9 (fructose), and 16.8 (sum). When the SSC calibration was applied to a separate validation set, the standard error of performance ranged from 0.94% to 1.72%. These results suggest that for assessment of mango ripeness, NIR SSC calibrations are superior to the NIR calibrations for any of the individual sugars. This nondestructive technology can be used in the screening and grading of mangoes and in quality evaluation at wholesale and retail levels.


2020 ◽  
Vol 187 ◽  
pp. 04006
Author(s):  
Wachiraya Lekhawattana ◽  
Panmanas Sirisomboon

The near infrared (NIR) spectroscopy both on-line and off-line scanning was applied on mango fruits (Mangifera indica CV. ‘Nam dok mai- si Thong’) for the overall precision test. The reference parameter was total soluble solids content (Brix value). The results showed that the off-line scanning had a higher accuracy than on-line scanning. The scanning repeatability of the off-line and on-line systems were 0.00199 and 0.00993, respectively. The scanning reproducibility of the off-line and online systems were 0.00279 and 0.00513, respectively. The reference of measurement repeatability was 0.2. The maximum coefficient of determination (R2max) of the reference measurement was 0.894.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Chiara Cevoli ◽  
Angelo Fabbri ◽  
Alessandro Gori ◽  
Maria Fiorenza Caboni ◽  
Adriano Guarnieri

Parmigiano–Reggiano (PR) cheese is one of the oldest traditional cheeses produced in Europe, and it is still one of the most valuable Protected Designation of Origin (PDO) cheeses of Italy. The denomination of origin is extended to the grated cheese when manufactured exclusively from whole Parmigiano-Reggiano cheese wheels that respond to the production standard. The grated cheese must be matured for a period of at least 12 months and characterized by a rind content not over 18%. In this investigation the potential of near infrared spectroscopy (NIR), coupled to different statistical methods, were used to estimate the authenticity of grated Parmigiano Reggiano cheese PDO. Cheese samples were classified as: compliance PR, competitors, non-compliance PR (defected PR), and PR with rind content greater then 18%. NIR spectra were obtained using a spectrophotometer Vector 22/N (Bruker Optics, Milan, Italy) in the diffuse reflectance mode. Instrument was equipped with a rotating integrating sphere. Principal Component Analysis (PCA) was conducted for an explorative spectra analysis, while the Artificial Neural Networks (ANN) were used to classify spectra, according to different cheese categories. Subsequently the rind percentage and month of ripening were estimated by a Partial Least Squares regression (PLS). Score plots of the PCA show a clear separation between compliance PR samples and the rest of the sample was observed. Competitors samples and the defected PR samples were grouped together. The classification performance for all sample classes, obtained by ANN analysis, was higher of 90%, in test set validation. Rind content and month of ripening were predicted by PLS a with a determination coefficient greater then 0.95 (test set). These results showed that the method can be suitable for a fast screening of grated cheese authenticity.


Sign in / Sign up

Export Citation Format

Share Document