scholarly journals Anomalous Sun Flyby of 1I/2017 U1 (`Oumuamua)

Galaxies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 83
Author(s):  
Klaus Wilhelm ◽  
Bhola Dwivedi

The findings of Micheli et al. (Nature2018, 559, 223–226) that 1I/2017 U1 (`Oumuamua) showed anomalous orbital accelerations have motivated us to apply an impact model of gravity in search for an explanation. A small deviation from the 1/r potential, where r is the heliocentric distance, is expected for the gravitational interaction of extended bodies as a consequence of this model. This modification of the potential results from an offset of the effective gravitational centre from the geometric centre of a spherically symmetric body. Applied to anomalous Earth flybys, the model accounts for energy gains relative to an exact Kepler orbit and an increased speed of several spacecraft. In addition, the flat rotation profiles of eight disk galaxies could be explained, as well as the anomalous perihelion advances of the inner planets and the asteroid Icarus. The solution in the case of `Oumuamua is also based on the proposal that the offset leads to an approach and flyby trajectory different from a Kepler orbit without postulating cometary activity. As a consequence, an adjustment of the potential and centrifugal orbital energies can be envisaged outside the narrow uncertainty ranges of the published post-perihelion data without a need to re-analyse the original data. The observed anomalous acceleration has been modelled with respect to the orbit solutions JPL 16 and “Pseudo-MPEC” for 1I/`Oumuamua.

2019 ◽  
Vol 630 ◽  
pp. A42 ◽  
Author(s):  
M. Myllys ◽  
P. Henri ◽  
M. Galand ◽  
K. L. Heritier ◽  
N. Gilet ◽  
...  

Context. The Rosetta spacecraft escorted comet 67P/Churyumov-Gerasimenko from 2014 to September 2016. The mission provided in situ observations of the cometary plasma during different phases of the cometary activity, which enabled us to better understand its evolution as a function of heliocentric distance. Aims. In this study, different electron populations, called warm and hot, observed by the Ion and Electron Sensor (IES) of the Rosetta Plasma Consortium (RPC) are investigated near the comet during the escorting phase of the Rosetta mission. Methods. The estimates for the suprathermal electron densities and temperatures were extracted using IES electron data by fitting a double-kappa function to the measured velocity distributions. The fitting results were validated using observations from other RPC instruments. We give upgraded estimates for the warm and hot population densities compared to values previously shown in literature. Results. The fitted density and temperature estimates for both electron populations seen by IES are expressed as a function of heliocentric distance to study their evolution with the cometary activity. In addition, we studied the dependence between the electron properties and cometocentric distance. Conclusions. We observed that when the neutral outgassing rate of the nucleus is high (i.e., near perihelion) the suprathermal electrons are well characterized by a double-kappa distribution. In addition, warm and hot populations show a significant dependence with the heliocentric distance. The populations become clearly denser near perihelion while their temperatures are observed to remain almost constant. Moreover, the warm electron population density is shown to be strongly dependent on the radial distance from the comet. Finally, based on our results we reject the hypothesis that hot electron population seen by IES consists of solely suprathermal (halo) solar wind electrons, while we suggest that the hot electron population mainly consists of solar wind thermal electrons that have undergone acceleration near the comet.


Author(s):  
Joel Smoller ◽  
Blake Temple ◽  
Zeke Vogler

We identify the condition for smoothness at the centre of spherically symmetric solutions of Einstein’s original equations without the cosmological constant or dark energy. We use this to derive a universal phase portrait which describes general, smooth, spherically symmetric solutions near the centre of symmetry when the pressure p =0. In this phase portrait, the critical k =0 Friedmann space–time appears as a saddle rest point which is unstable to spherical perturbations. This raises the question as to whether the Friedmann space–time is observable by redshift versus luminosity measurements looking outwards from any point. The unstable manifold of the saddle rest point corresponding to Friedmann describes the evolution of local uniformly expanding space–times whose accelerations closely mimic the effects of dark energy. A unique simple wave perturbation from the radiation epoch is shown to trigger the instability, match the accelerations of dark energy up to second order and distinguish the theory from dark energy at third order. In this sense, anomalous accelerations are not only consistent with Einstein’s original theory of general relativity, but are a prediction of it without the cosmological constant or dark energy.


1985 ◽  
Vol 83 ◽  
pp. 149-172
Author(s):  
Hans Rickman

AbstractVarious aspects of comet/asteroid distinctions and interrelations are reviewed with emphasis on recent work and paying special attention to the following problems: characteristics of cometary activity at large heliocentric distance and uniqueness of comet P/Schwassmann-Wachmann 1 with respect to physical properties, the rôle of Trojans and other small bodies in the outer planetary system concerning comet/asteroid classification, possibilities for physical evolution of comets into asteroids, orbital and dynamical overlap of the comet and asteroid populations, and the cometary versus asteroidal origin of Earth-approaching asteroids. With regard to these latter questions it is argued that recent discoveries indicate a more substantial probability for Jupiter family comets to develop into asteroidal objects than earlier believed, and several examples of cometary association for newly discovered Apollo-Amor asteroids are also referred to. However, the fractional cometary contribution to the traditional Apollo-Amor asteroid population (aphelia far inside Jupiter’s orbit) apparently can not yet be reliably estimated.


Galaxies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 65
Author(s):  
Bobir Toshmatov ◽  
Ozodbek Rahimov ◽  
Bobomurat Ahmedov ◽  
Abdumirhakim Ahmedov

We study an influence of the leading coefficient of the parameterized line element of the spherically symmetric, static black hole on the capture of massless and massive particles. We have shown that negative (positive) values of ϵ decreases (increases) the radius of characteristic circular orbits and consequently, increases (decreases) the energy and decreases (increases) the angular momentum of the particle moving along these orbits. Moreover, we have calculated and compared the capture cross section of the massive particle in the relativistic and non-relativistic limits. It has been shown that in the case of small deviation from general relativity the capture cross section for the relativistic and nonrelativistic particle has an additional term being linear in the small dimensionless deviation parameter ϵ.


2022 ◽  
Vol 924 (1) ◽  
pp. 37
Author(s):  
Naceur Bouziani ◽  
David Jewitt

Abstract Recent observations show activity in long-period comet C/2017 K2 at heliocentric distances beyond the orbit of Uranus. With this as motivation, we constructed a simple model that takes a detailed account of gas transport modes and simulates the time-dependent sublimation of supervolatile ice from beneath a porous mantle on an incoming cometary nucleus. The model reveals a localized increase in carbon monoxide (CO) sublimation close to heliocentric distance r H = 150 au (local blackbody temperature ∼23 K), followed by a plateau and then a slow increase in activity toward smaller distances. This localized increase occurs as heat transport in the nucleus transitions between two regimes characterized by the rising temperature of the CO front at larger distances and nearly isothermal CO at smaller distances. As this transition is a general property of sublimation through a porous mantle, we predict that future observations of sufficient sensitivity will show that inbound comets (and interstellar interlopers) will exhibit activity at distances far beyond the planetary region of the solar system.


1967 ◽  
Vol 31 ◽  
pp. 313-317 ◽  
Author(s):  
C. C. Lin ◽  
F. H. Shu

Density waves in the nature of those proposed by B. Lindblad are described by detailed mathematical analysis of collective modes in a disk-like stellar system. The treatment is centered around a hypothesis of quasi-stationary spiral structure. We examine (a) the mechanism for the maintenance of this spiral pattern, and (b) its consequences on the observable features of the galaxy.


1999 ◽  
Vol 173 ◽  
pp. 381-387
Author(s):  
M. Królikowska ◽  
G. Sitarski ◽  
S. Szutowicz

AbstractThe nongravitational motion of five “erratic” short-period comets is studied on the basis of published astrometric observations. We present the precession models which successfully link all the observed apparitions of the comets: 21P/Giacobini-Zinner, 31P/Schwassmann-Wachmann 2, 32P/Comas Solá, 37P/Forbes, and 43P/Wolf-Harrington. We used the Sekanina's forced precession model of the rotating cometary nucleus to include the nongravitational terms into equations of the comet's motion. Values of six basic parameters (four connected with the rotating comet nucleus and two describing the precession of spin-axis of the nucleus) have been determined along the orbital elements from positional observations of the comets. The solutions were derived with additional assumptions which introduce instantaneous changes of modulus of reactive force,Aand of maximum of cometary activity with respect to perihelion time. The present precession models impose some contraints on sizes and rotational periods of cometary nuclei. According to our solutions the nucleus of 21P/Giacobini-Zinner with oblateness along the spin-axis of about 0.32 (equatorial to polar radius of 1.46) is the most oblate among five investigated comets.


1994 ◽  
Vol 144 ◽  
pp. 139-141 ◽  
Author(s):  
J. Rybák ◽  
V. Rušin ◽  
M. Rybanský

AbstractFe XIV 530.3 nm coronal emission line observations have been used for the estimation of the green solar corona rotation. A homogeneous data set, created from measurements of the world-wide coronagraphic network, has been examined with a help of correlation analysis to reveal the averaged synodic rotation period as a function of latitude and time over the epoch from 1947 to 1991.The values of the synodic rotation period obtained for this epoch for the whole range of latitudes and a latitude band ±30° are 27.52±0.12 days and 26.95±0.21 days, resp. A differential rotation of green solar corona, with local period maxima around ±60° and minimum of the rotation period at the equator, was confirmed. No clear cyclic variation of the rotation has been found for examinated epoch but some monotonic trends for some time intervals are presented.A detailed investigation of the original data and their correlation functions has shown that an existence of sufficiently reliable tracers is not evident for the whole set of examinated data. This should be taken into account in future more precise estimations of the green corona rotation period.


1979 ◽  
Vol 46 ◽  
pp. 368
Author(s):  
Clinton B. Ford

A “new charts program” for the Americal Association of Variable Star Observers was instigated in 1966 via the gift to the Association of the complete variable star observing records, charts, photographs, etc. of the late Prof. Charles P. Olivier of the University of Pennsylvania (USA). Adequate material covering about 60 variables, not previously charted by the AAVSO, was included in this original data, and was suitably charted in reproducible standard format.Since 1966, much additional information has been assembled from other sources, three Catalogs have been issued which list the new or revised charts produced, and which specify how copies of same may be obtained. The latest such Catalog is dated June 1978, and lists 670 different charts covering a total of 611 variables none of which was charted in reproducible standard form previous to 1966.


Sign in / Sign up

Export Citation Format

Share Document