scholarly journals Effects of Polyphenols in Tea (Camellia sinensis sp.) on the Modulation of Gut Microbiota in Human Trials and Animal Studies

2021 ◽  
Vol 12 (2) ◽  
pp. 202-216
Author(s):  
Mus Azza Suhana Khairudin ◽  
Abbe Maleyki Mhd Jalil ◽  
Napisah Hussin

A diet high in polyphenols is associated with a diversified gut microbiome. Tea is the second most consumed beverage in the world, after water. The health benefits of tea might be attributed to the presence of polyphenol compounds such as flavonoids (e.g., catechins and epicatechins), theaflavins, and tannins. Although many studies have been conducted on tea, little is known of its effects on the trillions of gut microbiota. Hence, this review aimed to systematically study the effect of tea polyphenols on the stimulation or suppression of gut microbiota in humans and animals. It was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Articles were retrieved from PubMed and Scopus databases, and data were extracted from 6 human trials and 15 animal studies. Overall, large variations were observed in terms of microbiota composition between humans and animals. A more consistent pattern of diversified microbiota was observed in animal studies. Tea alleviated the gut microbiota imbalance caused by high-fat diet-induced obesity, diabetes, and ultraviolet-induced damage. The overall changes in microbiota composition measured by beta diversity analysis showed that tea had shifted the microbiota from the pattern seen in animals that received tea-free intervention. In humans, a prebiotic-like effect was observed toward the gut microbiota, but these results appeared in lower-quality studies. The beta diversity in human microbiota remains intact despite tea intervention; supplementation with different teas affects different types of bacterial taxa in the gut. These studies suggest that tea polyphenols may have a prebiotic effect in disease-induced animals and in a limited number of human interventions. Further intervention is needed to identify the mechanisms of action underlying the effects of tea on gut microbiota.

Author(s):  
Mus Azza Suhana Khairudin ◽  
Abbe Maleyki Mhd Jalil ◽  
Napisah Hussin

A diet high in polyphenols is associated with a diversified gut microbiome. Tea is the second most consumed beverage in the world, after water. The health benefits of tea might be attributed to the presence of polyphenol compounds such as catechins, theaflavins, tannins, and flavonoids. Although many studies are on tea, little is known of its effects on trillions of gut microbiota. Hence, this review is aimed at systematically studying the effect of tea polyphenols on the stimulation or suppression of gut microbiota in humans and animals. It was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Articles were retrieved from PubMed and Scopus databases, and data were extracted from 6 human trials and 15 animal studies. Overall, huge variations were observed in terms of microbiota composition between humans and animals. A more consistent pattern of diversified microbiota was observed in animal studies. Tea alleviated the gut microbiota imbalance caused by high-fat diet-induced obesity, diabetes, and ultraviolet-induced damage. Overall changes in microbiota composition measured by beta diversity analysis showed that tea had shifted the microbiota from the pattern seen in animals that received tea-free intervention. In humans, the prebiotic-like effect was observed towards gut microbiota, but these results appear in lower-quality studies. Beta diversity in human microbiota remains intact despite tea intervention; supplementation with different teas affected different types of bacterial taxa in the gut. These studies suggest that tea polyphenols may have a prebiotic effect in disease-induced animals and in a limited number of human interventions. Further intervention is needed to identify the mechanisms of action underlying the effects of tea on gut microbiota.


Medicina ◽  
2019 ◽  
Vol 55 (4) ◽  
pp. 84 ◽  
Author(s):  
Rainer Klement ◽  
Valerio Pazienza

Diet is frequently considered as a food regimen focused on weight loss, while it is actually the sum of food consumed by the organism. Western diets, modern lifestyle, sedentary behaviors, smoking habits, and drug consumption have led to a significant reduction of gut microbial diversity, which is linked to many non-communicable diseases (NCDs). The latter kill 40 million people each year, equivalent to more than 70% of all deaths globally. Among NCDs, tumors play a major role, being responsible for 29% of deaths from NCDs. A link between diet, microbiota, and cancer prevention and treatment has recently been unveiled, underlining the importance of a new food culture based on limiting dietary surplus and on preferring healthier foods. Here, we review the effects of some of the most popular “cancer-specific” diets on microbiota composition and their potential impact on cancer prevention and treatment.


OCL ◽  
2020 ◽  
Vol 27 ◽  
pp. 70
Author(s):  
Philippe Gérard

The human intestine harbours a complex and diverse bacterial community called the gut microbiota. This microbiota, stable during the lifetime, is specific of each individual despite the existence of a phylogenetic core shared by the majority of adults. The influence of the gut microbiota on host’s physiology has been largely studied using germfree animals and studies using these animal models have revealed that the effects of lipids on host physiology are microbiota-dependent. Studies in mice have also shown that a high-fat diet rapidly and reproducibly alters the gut microbiome. In humans, dietary fat interventions did not lead to strong and consistent modifications of the microbiota composition. Nevertheless, an association between total fat intake and the reduction of the microbiota richness has been repeatedly found. Interestingly, different types of fat exert different or even opposite effects on the microbiota. Concurrently, the gut microbiota is able to convert the lipids entering the colon, including fatty acids or cholesterol, leading to the production of metabolites with potential health effects.


2020 ◽  
Vol 318 (2) ◽  
pp. E276-E285 ◽  
Author(s):  
Nirajan Shrestha ◽  
Simone L. Sleep ◽  
James S. M. Cuffe ◽  
Olivia J. Holland ◽  
Andrew J. McAinch ◽  
...  

Dietary intakes of linoleic acid (LA) have increased, including in women of reproductive age. Changes in maternal gut microbiome have been implicated in the metabolic adaptions that occur during pregnancy. We aimed to investigate whether consumption of a diet with elevated LA altered fecal microbiome diversity before and during pregnancy. Female Wistar-Kyoto rats consumed a high-LA diet (HLA: 6.21% of energy) or a low-LA diet (LLA: 1.44% of energy) for 10 wk before mating and during pregnancy. DNA was isolated from fecal samples before pregnancy [embryonic day 0 (E0)], or during pregnancy at E10 and E20. The microbiome composition was assessed with 16S rRNA sequencing. At E0, the beta-diversity of LLA and HLA groups differed with HLA rats having significantly lower abundance of the genera Akkermansia, Peptococcus, Sutterella, and Xo2d06 but higher abundance of Butyricimonas and Coprococcus. Over gestation, in LLA but not HLA rats, there was a reduction in alpha-diversity and an increase in beta-diversity. In the LLA group, the abundance of Akkermansia, Blautia, rc4.4, and Streptococcus decreased over gestation, whereas Coprococcus increased. In the HLA group; only the abundance of Butyricimonas decreased. At E20, there were no differences in alpha- and beta-diversity, and the abundance of Roseburia was significantly increased in the HLA group. In conclusion, consumption of a HLA diet alters gut microbiota composition, as does pregnancy in rats consuming a LLA diet. In pregnancy, consumption of a HLA diet does not alter gut microbiota composition.


2019 ◽  
Vol 20 (3) ◽  
pp. 501 ◽  
Author(s):  
Rossella Cianci ◽  
Laura Franza ◽  
Giovanni Schinzari ◽  
Ernesto Rossi ◽  
Gianluca Ianiro ◽  
...  

The gut microbiota is central to the pathogenesis of several inflammatory and autoimmune diseases. While multiple mechanisms are involved, the immune system clearly plays a special role. Indeed, the breakdown of the physiological balance in gut microbial composition leads to dysbiosis, which is then able to enhance inflammation and to influence gene expression. At the same time, there is an intense cross-talk between the microbiota and the immunological niche in the intestinal mucosa. These interactions may pave the way to the development, growth and spreading of cancer, especially in the gastro-intestinal system. Here, we review the changes in microbiota composition, how they relate to the immunological imbalance, influencing the onset of different types of cancer and the impact of these mechanisms on the efficacy of traditional and upcoming cancer treatments.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Sabrine Naimi ◽  
Emilie Viennois ◽  
Andrew T. Gewirtz ◽  
Benoit Chassaing

Abstract Background Epidemiologic evidence and animal studies implicate dietary emulsifiers in contributing to the increased prevalence of diseases associated with intestinal inflammation, including inflammatory bowel diseases and metabolic syndrome. Two synthetic emulsifiers in particular, carboxymethylcellulose and polysorbate 80, profoundly impact intestinal microbiota in a manner that promotes gut inflammation and associated disease states. In contrast, the extent to which other food additives with emulsifying properties might impact intestinal microbiota composition and function is not yet known. Methods To help fill this knowledge gap, we examined here the extent to which a human microbiota, maintained ex vivo in the MiniBioReactor Array model, was impacted by 20 different commonly used dietary emulsifiers. Microbiota density, composition, gene expression, and pro-inflammatory potential (bioactive lipopolysaccharide and flagellin) were measured daily. Results In accordance with previous studies, both carboxymethylcellulose and polysorbate 80 induced a lasting seemingly detrimental impact on microbiota composition and function. While many of the other 18 additives tested had impacts of similar extent, some, such as lecithin, did not significantly impact microbiota in this model. Particularly stark detrimental impacts were observed in response to various carrageenans and gums, which altered microbiota density, composition, and expression of pro-inflammatory molecules. Conclusions These results indicate that numerous, but not all, commonly used emulsifiers can directly alter gut microbiota in a manner expected to promote intestinal inflammation. Moreover, these data suggest that clinical trials are needed to reduce the usage of the most detrimental compounds in favor of the use of emulsifying agents with no or low impact on the microbiota.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1286
Author(s):  
Xiaoxue Qiu ◽  
Chi Chen ◽  
Xiaoli Chen

Gut microbiota modulate age-associated changes in metabolism, innate immune responses, and cognitive function. However, the involvement of host factors in the regulation of age-dependent gut microbial structure and intestinal inflammation is largely unknown. Lipocalin 2 (Lcn2) has previously been identified as an adipocytokine and characterized as an important regulator of diet-induced obesity and inflammation. Previous studies have shown that Lcn2 plays a role in high fat diet-induced reshaping of gut microbiota and intestinal inflammation. However, the role of Lcn2 in the regulation of aging-related reshaping of gut microbiota is unclear. Herein, we demonstrate that fecal levels of Lcn2 are reduced during aging. Age reshaped gut microbiota composition in wild-type (WT) mice. Interestingly, Lcn2 deficiency diminished this effect of aging in Lcn2 knockout (LKO) mice, leading to decreased bacterial diversity and increased Firmicutes to Bacteroidetes (F to B) ratio. Specifically, we identified 16 bacteria at the family level that were differentially abundant between WT and LKO mice at old age. Several health-promoting bacteria, including SCFA-producing bacteria, were significantly less prevalent in old LKO mice compared to WT mice, indicating that Lcn2 deficiency shifts the aging-related gut microbial community towards an unhealthy population and lowers microbial butyrate production. Our results provide a line of evidence that Lcn2 plays a role in the control of aging-related reshaping of gut microbiota composition and metabolites.


Sign in / Sign up

Export Citation Format

Share Document