scholarly journals Impact of Different Types of Diet on Gut Microbiota Profiles and Cancer Prevention and Treatment

Medicina ◽  
2019 ◽  
Vol 55 (4) ◽  
pp. 84 ◽  
Author(s):  
Rainer Klement ◽  
Valerio Pazienza

Diet is frequently considered as a food regimen focused on weight loss, while it is actually the sum of food consumed by the organism. Western diets, modern lifestyle, sedentary behaviors, smoking habits, and drug consumption have led to a significant reduction of gut microbial diversity, which is linked to many non-communicable diseases (NCDs). The latter kill 40 million people each year, equivalent to more than 70% of all deaths globally. Among NCDs, tumors play a major role, being responsible for 29% of deaths from NCDs. A link between diet, microbiota, and cancer prevention and treatment has recently been unveiled, underlining the importance of a new food culture based on limiting dietary surplus and on preferring healthier foods. Here, we review the effects of some of the most popular “cancer-specific” diets on microbiota composition and their potential impact on cancer prevention and treatment.

2021 ◽  
Vol 12 (2) ◽  
pp. 202-216
Author(s):  
Mus Azza Suhana Khairudin ◽  
Abbe Maleyki Mhd Jalil ◽  
Napisah Hussin

A diet high in polyphenols is associated with a diversified gut microbiome. Tea is the second most consumed beverage in the world, after water. The health benefits of tea might be attributed to the presence of polyphenol compounds such as flavonoids (e.g., catechins and epicatechins), theaflavins, and tannins. Although many studies have been conducted on tea, little is known of its effects on the trillions of gut microbiota. Hence, this review aimed to systematically study the effect of tea polyphenols on the stimulation or suppression of gut microbiota in humans and animals. It was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Articles were retrieved from PubMed and Scopus databases, and data were extracted from 6 human trials and 15 animal studies. Overall, large variations were observed in terms of microbiota composition between humans and animals. A more consistent pattern of diversified microbiota was observed in animal studies. Tea alleviated the gut microbiota imbalance caused by high-fat diet-induced obesity, diabetes, and ultraviolet-induced damage. The overall changes in microbiota composition measured by beta diversity analysis showed that tea had shifted the microbiota from the pattern seen in animals that received tea-free intervention. In humans, a prebiotic-like effect was observed toward the gut microbiota, but these results appeared in lower-quality studies. The beta diversity in human microbiota remains intact despite tea intervention; supplementation with different teas affects different types of bacterial taxa in the gut. These studies suggest that tea polyphenols may have a prebiotic effect in disease-induced animals and in a limited number of human interventions. Further intervention is needed to identify the mechanisms of action underlying the effects of tea on gut microbiota.


2021 ◽  
Author(s):  
Noel T. Mueller ◽  
Moira K. Differding ◽  
Mingyu Zhang ◽  
Nisa Maruthar ◽  
Stephen P Juraschek ◽  
...  

<b>Objective:</b> To determine the longer-term effects of metformin and behavioral weight loss on gut microbiota and SCFAs. <p><b>Methods: </b>We conducted a parallel-arm, randomized trial. We enrolled overweight/obese adults who had been treated for solid tumors but had no ongoing cancer treatment and randomized them (n=121) to: 1) metformin (up to 2000mg), 2) coach-directed behavioral weight loss, or 3) self-directed care (control) for 12 months. We collected stool and serum at baseline (n=114), 6 months (n=109) and 12 months (n=105). From stool, we extracted microbial DNA and conducted amplicon and metagenomic sequencing. We measured SCFAs and other biochemical parameters from fasting serum. </p> <p><b>Results: </b>Of the 121 participants, 79% were female, 46% were black, and the mean age was 60y. Only metformin intervention significantly altered microbiota composition. Compared to control, metformin increased <i>E. Coli</i> and <i>Ruminococcus torques</i> and decreased <i>Intestinibacter Bartletti</i> at both 6 and 12 months, and decreased the genus <i>Roseburia (genus)</i>, including <i>R. faecis</i> and <i>R. intestinalis,</i> at 12 months. Effects were similar when comparing metformin to the behavioral weight loss group. Metformin also altered 62 metagenomic functional pathways and increased butyrate, acetate, and valerate at 6 months. Behavioral weight loss vs. control did not significantly alter microbiota composition, but did increase acetate at 6 months. Increases in acetate were associated with decreases in fasting insulin.</p> <p><b>Conclusions:</b> Metformin, but not behavioral weight loss, impacted gut microbiota composition and function at 6 months and 12 months. Both metformin and behavioral weight loss altered 6-month SCFAs, including increasing acetate which correlated with improved insulin sensitivity.</p>


Author(s):  
Mus Azza Suhana Khairudin ◽  
Abbe Maleyki Mhd Jalil ◽  
Napisah Hussin

A diet high in polyphenols is associated with a diversified gut microbiome. Tea is the second most consumed beverage in the world, after water. The health benefits of tea might be attributed to the presence of polyphenol compounds such as catechins, theaflavins, tannins, and flavonoids. Although many studies are on tea, little is known of its effects on trillions of gut microbiota. Hence, this review is aimed at systematically studying the effect of tea polyphenols on the stimulation or suppression of gut microbiota in humans and animals. It was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Articles were retrieved from PubMed and Scopus databases, and data were extracted from 6 human trials and 15 animal studies. Overall, huge variations were observed in terms of microbiota composition between humans and animals. A more consistent pattern of diversified microbiota was observed in animal studies. Tea alleviated the gut microbiota imbalance caused by high-fat diet-induced obesity, diabetes, and ultraviolet-induced damage. Overall changes in microbiota composition measured by beta diversity analysis showed that tea had shifted the microbiota from the pattern seen in animals that received tea-free intervention. In humans, the prebiotic-like effect was observed towards gut microbiota, but these results appear in lower-quality studies. Beta diversity in human microbiota remains intact despite tea intervention; supplementation with different teas affected different types of bacterial taxa in the gut. These studies suggest that tea polyphenols may have a prebiotic effect in disease-induced animals and in a limited number of human interventions. Further intervention is needed to identify the mechanisms of action underlying the effects of tea on gut microbiota.


OCL ◽  
2020 ◽  
Vol 27 ◽  
pp. 70
Author(s):  
Philippe Gérard

The human intestine harbours a complex and diverse bacterial community called the gut microbiota. This microbiota, stable during the lifetime, is specific of each individual despite the existence of a phylogenetic core shared by the majority of adults. The influence of the gut microbiota on host’s physiology has been largely studied using germfree animals and studies using these animal models have revealed that the effects of lipids on host physiology are microbiota-dependent. Studies in mice have also shown that a high-fat diet rapidly and reproducibly alters the gut microbiome. In humans, dietary fat interventions did not lead to strong and consistent modifications of the microbiota composition. Nevertheless, an association between total fat intake and the reduction of the microbiota richness has been repeatedly found. Interestingly, different types of fat exert different or even opposite effects on the microbiota. Concurrently, the gut microbiota is able to convert the lipids entering the colon, including fatty acids or cholesterol, leading to the production of metabolites with potential health effects.


2019 ◽  
Vol 20 (3) ◽  
pp. 501 ◽  
Author(s):  
Rossella Cianci ◽  
Laura Franza ◽  
Giovanni Schinzari ◽  
Ernesto Rossi ◽  
Gianluca Ianiro ◽  
...  

The gut microbiota is central to the pathogenesis of several inflammatory and autoimmune diseases. While multiple mechanisms are involved, the immune system clearly plays a special role. Indeed, the breakdown of the physiological balance in gut microbial composition leads to dysbiosis, which is then able to enhance inflammation and to influence gene expression. At the same time, there is an intense cross-talk between the microbiota and the immunological niche in the intestinal mucosa. These interactions may pave the way to the development, growth and spreading of cancer, especially in the gastro-intestinal system. Here, we review the changes in microbiota composition, how they relate to the immunological imbalance, influencing the onset of different types of cancer and the impact of these mechanisms on the efficacy of traditional and upcoming cancer treatments.


2017 ◽  
Vol 3 (4) ◽  
pp. 252-262 ◽  
Author(s):  
Ida N. Kieler ◽  
Shamrulazhar Shamzir Kamal ◽  
Anne D. Vitger ◽  
Dennis S. Nielsen ◽  
Charlotte Lauridsen ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Xin Wang ◽  
Xueqi Li ◽  
Yumei Dong

As a metabolite generated by gut microbiota, trimethylamine-N-oxide (TMAO) has been proven to promote atherosclerosis and is a novel potential risk factor for cardiovascular disease (CVD). The objective of this study was to examine whether regulating gut microbiota by vitamin D supplementation could reduce the plasma TMAO level in mice. For 16 weeks, C57BL/6J mice were fed a chow (C) or high-choline diet (HC) without or with supplementation of vitamin D3 (CD3 and HCD3) or a high-choline diet with vitamin D3 supplementation and antibiotics (HCD3A). The results indicate that the HC group exhibited higher plasma trimethylamine (TMA) and TMAO levels, lower richness of gut microbiota, and significantly increased Firmicutes and decreased Bacteroidetes as compared with group C. Vitamin D supplementation significantly reduced plasma TMA and TMAO levels in mice fed a high-choline diet. Furthermore, gut microbiota composition was regulated, and the Firmicutes/Bacteroidetes ratio was reduced by vitamin D. Spearman correlation analysis indicated that Bacteroides and Akkermansia were negatively correlated with plasma TMAO in the HC and HCD3 groups. Our study provides a novel avenue for the prevention and treatment of CVD with vitamin D.


2020 ◽  
Vol 111 (6) ◽  
pp. 1127-1136 ◽  
Author(s):  
Gabriela K Fragiadakis ◽  
Hannah C Wastyk ◽  
Jennifer L Robinson ◽  
Erica D Sonnenburg ◽  
Justin L Sonnenburg ◽  
...  

Abstract Background With the rising rates of obesity and associated metabolic disorders, there is a growing need for effective long-term weight-loss strategies, coupled with an understanding of how they interface with human physiology. Interest is growing in the potential role of gut microbes as they pertain to responses to different weight-loss diets; however, the ways that diet, the gut microbiota, and long-term weight loss influence one another is not well understood. Objectives Our primary objective was to determine if baseline microbiota composition or diversity was associated with weight-loss success. A secondary objective was to track the longitudinal associations of changes to lower-carbohydrate or lower-fat diets and concomitant weight loss with the composition and diversity of the gut microbiota. Methods We used 16S ribosomal RNA gene amplicon sequencing to profile microbiota composition over a 12-mo period in 49 participants as part of a larger randomized dietary intervention study of participants consuming either a healthy low-carbohydrate or a healthy low-fat diet. Results While baseline microbiota composition was not predictive of weight loss, each diet resulted in substantial changes in the microbiota 3-mo after the start of the intervention; some of these changes were diet specific (14 taxonomic changes specific to the healthy low-carbohydrate diet, 12 taxonomic changes specific to the healthy low-fat diet) and others tracked with weight loss (7 taxonomic changes in both diets). After these initial shifts, the microbiota returned near its original baseline state for the remainder of the intervention, despite participants maintaining their diet and weight loss for the entire study. Conclusions These results suggest a resilience to perturbation of the microbiota's starting profile. When considering the established contribution of obesity-associated microbiotas to weight gain in animal models, microbiota resilience may need to be overcome for long-term alterations to human physiology. This trial was registered at clinicaltrials.gov as NCT01826591.


Obesity ◽  
2009 ◽  
Vol 17 (10) ◽  
pp. 1906-1915 ◽  
Author(s):  
Arlette Santacruz ◽  
Ascensión Marcos ◽  
Julia Wärnberg ◽  
Amelia Martí ◽  
Miguel Martin-Matillas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document