scholarly journals The Interplay between Immunity and Microbiota at Intestinal Immunological Niche: The Case of Cancer

2019 ◽  
Vol 20 (3) ◽  
pp. 501 ◽  
Author(s):  
Rossella Cianci ◽  
Laura Franza ◽  
Giovanni Schinzari ◽  
Ernesto Rossi ◽  
Gianluca Ianiro ◽  
...  

The gut microbiota is central to the pathogenesis of several inflammatory and autoimmune diseases. While multiple mechanisms are involved, the immune system clearly plays a special role. Indeed, the breakdown of the physiological balance in gut microbial composition leads to dysbiosis, which is then able to enhance inflammation and to influence gene expression. At the same time, there is an intense cross-talk between the microbiota and the immunological niche in the intestinal mucosa. These interactions may pave the way to the development, growth and spreading of cancer, especially in the gastro-intestinal system. Here, we review the changes in microbiota composition, how they relate to the immunological imbalance, influencing the onset of different types of cancer and the impact of these mechanisms on the efficacy of traditional and upcoming cancer treatments.

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 293-294
Author(s):  
Camila S Marcolla ◽  
Benjamin Willing

Abstract This study aimed to characterize poultry microbiota composition in commercial farms using 16S rRNA sequencing. Animals raised in sanitized environments have lower survival rates when facing pathogenic challenges compared to animals naturally exposed to commensal organisms. We hypothesized that intensive rearing practices inadvertently impair chicken exposure to microbes and the establishment of a balanced gut microbiota. We compared gut microbiota composition of broilers (n = 78) and layers (n = 20) from different systems, including commercial intensive farms with and without in-feed antibiotics, organic free-range farms, backyard-raised chickens and chickens in an experimental farm. Microbial community composition of conventionally raised broilers was significantly different from antibiotic-free broilers (P = 0.012), from broilers raised outdoors (P = 0.048) and in an experimental farm (P = 0.006) (Fig1). Significant community composition differences were observed between antibiotic-fed and antibiotic-free chickens (Fig2). Antibiotic-free chickens presented higher alpha-diversity, higher relative abundance of Deferribacteres, Fusobacteria, Bacteroidetes and Actinobacteria, and lower relative abundance of Firmicutes, Clostridiales and Enterobacteriales than antibiotic-fed chickens (P < 0.001) (Fig3). Microbial community composition significantly changed as birds aged. In experimental farm, microbial community composition was significant different for 7, 21 and 35 day old broilers (P < 0.001), and alpha diversity increased from 7 to 21d (P < 0.024), but not from 21 to 35d; whereas, in organic systems, increases in alpha-diversity were observed from 7d to 21d, and from 21d to 35d (P < 0.05). Broilers and layers raised together showed no differences in microbiota composition and alpha diversity (P > 0.8). It is concluded that production practices consistently impact microbial composition, and that antibiotics significantly reduces microbial diversity. We are now exploring the impact of differential colonization in a controlled setting, to determine the impact of the microbes associated with extensively raised chickens. This study will support future research and the development of methods to isolate and introduce beneficial microbes to commercial systems.


2019 ◽  
Vol 11 ◽  
pp. 1759720X1984463 ◽  
Author(s):  
Rahul Bodkhe ◽  
Baskar Balakrishnan ◽  
Veena Taneja

Rheumatoid arthritis (RA) is an autoimmune disorder with multifactorial etiology; both genetic and environmental factors are known to be involved in pathogenesis. Treatment with disease-modifying antirheumatic drugs (DMARDs) plays an essential role in controlling disease progression and symptoms. DMARDs have immunomodulatory properties and suppress immune response by interfering in various pro-inflammatory pathways. Recent evidence has shown that the gut microbiota directly and indirectly modulates the host immune system. RA has been associated with dysbiosis of the gut microbiota. Patients with RA treated with DMARDs show partial restoration of eubiotic gut microbiome. Hence, it is essential to understand the impact of DMARDs on the microbial composition and its consequent influences on the host immune system to identify novel therapies for RA. In this review, we discuss the importance of antirheumatic-drug-induced host microbiota modulations and possible probiotics that can generate eubiosis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gilliard Lach ◽  
Christine Fülling ◽  
Thomaz F. S. Bastiaanssen ◽  
Fiona Fouhy ◽  
Aoife N. O’ Donovan ◽  
...  

Abstract The gut microbiota is an essential regulator of many aspects of host physiology. Disruption of gut microbial communities affects gut-brain communication which ultimately can manifest as changes in brain function and behaviour. Transient changes in gut microbial composition can be induced by various intrinsic and extrinsic factors, however, it is possible that enduring shifts in the microbiota composition can be achieved by perturbation at a timepoint when the gut microbiota has not fully matured or is generally unstable, such as during early life or ageing. In this study, we investigated the effects of 3-week microbiota depletion with antibiotic treatment during the adolescent period and in adulthood. Following a washout period to restore the gut microbiota, behavioural and molecular hallmarks of gut-brain communication were investigated. Our data revealed that transient microbiota depletion had long-lasting effects on microbiota composition and increased anxiety-like behaviour in mice exposed to antibiotic treatment during adolescence but not in adulthood. Similarly, gene expression in the amygdala was more severely affected in mice treated during adolescence. Taken together these data highlight the vulnerability of the gut microbiota during the critical adolescent period and the long-lasting impact manipulations of the microbiota can have on gene expression and behaviour in adulthood.


2021 ◽  
Vol 11 (3) ◽  
pp. 198
Author(s):  
Yi-Ting Lin ◽  
Ting-Yun Lin ◽  
Szu-Chun Hung ◽  
Po-Yu Liu ◽  
Wei-Chun Hung ◽  
...  

β-blockers are commonly prescribed to treat cardiovascular disease in hemodialysis patients. Beyond the pharmacological effects, β-blockers have potential impacts on gut microbiota, but no study has investigated the effect in hemodialysis patients. Hence, we aim to investigate the gut microbiota composition difference between β-blocker users and nonusers in hemodialysis patients. Fecal samples collected from hemodialysis patients (83 β-blocker users and 110 nonusers) were determined by 16S ribosomal RNA amplification sequencing. Propensity score (PS) matching was performed to control confounders. The microbial composition differences were analyzed by the linear discriminant analysis effect size, random forest, and zero-inflated Gaussian fit model. The α-diversity (Simpson index) was greater in β-blocker users with a distinct β-diversity (Bray–Curtis Index) compared to nonusers in both full and PS-matched cohorts. There was a significant enrichment in the genus Flavonifractor in β-blocker users compared to nonusers in full and PS-matched cohorts. A similar finding was demonstrated in random forest analysis. In conclusion, hemodialysis patients using β-blockers had a different gut microbiota composition compared to nonusers. In particular, the Flavonifractor genus was increased with β-blocker treatment. Our findings highlight the impact of β-blockers on the gut microbiota in hemodialysis patients.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1905
Author(s):  
Jinyoung Kim ◽  
Kathryn J. Burton-Pimentel ◽  
Charlotte Fleuti ◽  
Carola Blaser ◽  
Valentin Scherz ◽  
...  

The gut microbiota adapts to age-related changes in host physiology but is also affected by environmental stimuli, like diet. As a source of both pre- and probiotics, dairy and fermented foods modulate the gut microbiota composition, which makes them interesting food groups to use for the investigation of interactions between diet and ageing. Here we present the effects of excluding dairy products and limiting fermented food consumption for 19 days on gut microbiota composition and circulating metabolites of 28 healthy, young (YA) and older (OA) adult men. The intervention affected gut microbial composition in both groups, with significant increases in Akkermansia muciniphila and decreases in bacteria of the Clostridiales order. Lower fasting levels of glucose and insulin, as well as dairy-associated metabolites like lactose and pentadecanoic acid, were observed after the intervention, with no effect of age. The intervention also decreased HDL and LDL cholesterol levels. Dairy fat intake was positively associated with the HDL cholesterol changes but not with the LDL/HDL ratio. In conclusion, restricting the intake of dairy and fermented foods in men modified their gut microbiota and blood metabolites, while the impact of the dietary restrictions on these outcomes was more marked than the effect of age.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2393 ◽  
Author(s):  
Rinninella ◽  
Cintoni ◽  
Raoul ◽  
Lopetuso ◽  
Scaldaferri ◽  
...  

The gut microbiota is a changing ecosystem, containing trillions of bacteria, continuously shaped by many factors, such as dietary habits, seasonality, lifestyle, stress, antibiotics use, or diseases. A healthy host–microorganisms balance must be respected in order to optimally maintain the intestinal barrier and immune system functions and, consequently, prevent disease development. In the past several decades, the adoption of modern dietary habits has become a growing health concern, as it is strongly associated with obesity and related metabolic diseases, promoting inflammation and both structural and behavioral changes in gut microbiota. In this context, novel dietary strategies are emerging to prevent diseases and maintain health. However, the consequences of these different diets on gut microbiota modulation are still largely unknown, and could potentially lead to alterations of gut microbiota, intestinal barrier, and the immune system. The present review aimed to focus on the impact of single food components (macronutrients and micronutrients), salt, food additives, and different dietary habits (i.e., vegan and vegetarian, gluten-free, ketogenic, high sugar, low FODMAP, Western-type, and Mediterranean diets) on gut microbiota composition in order to define the optimal diet for a healthy modulation of gut microbiota.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Camilo Quiroga-González ◽  
Luis Alberto Chica Cardenas ◽  
Mónica Ramírez ◽  
Alejandro Reyes ◽  
Camila González ◽  
...  

AbstractMicrobiome is known to play an important role in the health of organisms and different factors such as diet have been associated with modifications in microbial communities. Differences in the microbiota composition of wild and captive animals has been evaluated; however, variation during a reintroduction process in primates has never been reported. Our aim was to identify changes in the bacterial composition of three individuals of reintroduced woolly monkeys (Lagothrix lagothricha) and the variables associated with such changes. Fecal samples were collected and the V4 region of the 16S rRNA gene was sequenced to determine gut microbial composition and functionality. Individual samples from released individuals showed a higher microbial diversity after being released compared to before liberation, associated with changes in their diet. Beta diversity and functionality analysis showed separation of samples from released and captive conditions and the major factor of variation was the moment of liberation. This study shows that intestinal microbiota varies depending on site conditions and is mainly associated with diet diversity. The intake of food from wild origin by released primates may promote a positive effect on gut microbiota, improving health, and potentially increasing success in reintroduction processes.


2021 ◽  
Vol 12 (2) ◽  
pp. 202-216
Author(s):  
Mus Azza Suhana Khairudin ◽  
Abbe Maleyki Mhd Jalil ◽  
Napisah Hussin

A diet high in polyphenols is associated with a diversified gut microbiome. Tea is the second most consumed beverage in the world, after water. The health benefits of tea might be attributed to the presence of polyphenol compounds such as flavonoids (e.g., catechins and epicatechins), theaflavins, and tannins. Although many studies have been conducted on tea, little is known of its effects on the trillions of gut microbiota. Hence, this review aimed to systematically study the effect of tea polyphenols on the stimulation or suppression of gut microbiota in humans and animals. It was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Articles were retrieved from PubMed and Scopus databases, and data were extracted from 6 human trials and 15 animal studies. Overall, large variations were observed in terms of microbiota composition between humans and animals. A more consistent pattern of diversified microbiota was observed in animal studies. Tea alleviated the gut microbiota imbalance caused by high-fat diet-induced obesity, diabetes, and ultraviolet-induced damage. The overall changes in microbiota composition measured by beta diversity analysis showed that tea had shifted the microbiota from the pattern seen in animals that received tea-free intervention. In humans, a prebiotic-like effect was observed toward the gut microbiota, but these results appeared in lower-quality studies. The beta diversity in human microbiota remains intact despite tea intervention; supplementation with different teas affects different types of bacterial taxa in the gut. These studies suggest that tea polyphenols may have a prebiotic effect in disease-induced animals and in a limited number of human interventions. Further intervention is needed to identify the mechanisms of action underlying the effects of tea on gut microbiota.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
K Apostolidis

Abstract The speaker will present the perspective of the cancer patients, and the challenges they encounter across the spectrum of care and what measures they consider relevant in terms of prevention, diagnosis, treatment and, indeed, to raise awareness of the impact of AMR on rendering cancer treatments ineffective. She will elaborate on survivorship, and on the impact of AMR on the quality of life of patients, their carers, and families. Emphasis will be given on the implications of modern therapies, such as immunotherapy, representing a unique challenge in terms of better understanding the effect on overall health of patients, with the effect they have the immune system, further weakening the patient and leaving him/her exposed to infections potentially of higher risk than cancer itself.


Author(s):  
Sofia Ainonen ◽  
Mysore V Tejesvi ◽  
Md. Rayhan Mahmud ◽  
Niko Paalanne ◽  
Tytti Pokka ◽  
...  

Abstract Background Intrapartum antibiotic prophylaxis (IAP) is widely used, but the evidence of the long-term effects on the gut microbiota and subsequent health of children is limited. Here, we compared the impacts of perinatal antibiotic exposure and later courses of antibiotic courses on gut microbiota. Methods This was a prospective, controlled cohort study among 100 vaginally delivered infants with different perinatal antibiotic exposures: control (27), IAP (27), postnatal antibiotics (24), and IAP and postnatal antibiotics (22). At 1 year of age, we performed next-generation sequencing of the bacterial 16S ribosomal RNA gene of fecal samples. Results Exposure to the perinatal antibiotics had a clear impact on the gut microbiota. The abundance of the Bacteroidetes phylum was significantly higher in the control group, whereas the relative abundance of Escherichia coli was significantly lower in the control group. The impact of the perinatal antibiotics on the gut microbiota composition was greater than exposure to later courses of antibiotics (28% of participants). Conclusions Perinatal antibiotic exposure had a marked impact on the gut microbiota at the age of 1 year. The timing of the antibiotic exposure appears to be the critical factor for the changes observed in the gut microbiota. Impact Infants are commonly exposed to IAP and postnatal antibiotics, and later to courses of antibiotics during the first year of life. Perinatal antibiotics have been associated with an altered gut microbiota during the first months of life, whereas the evidence regarding the long-term impact is more limited. Perinatal antibiotic exposure had a marked impact on the infant’s gut microbiota at 1 year of age. Impact of the perinatal antibiotics on the gut microbiota composition was greater than that of the later courses of antibiotics at the age of 1 year.


Sign in / Sign up

Export Citation Format

Share Document