scholarly journals Decreased Temperature Sensitivity of Vestigial Gene Expression in Temperate Populations of Drosophila melanogaster

Genes ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 498
Author(s):  
Voigt ◽  
Erpf ◽  
Stephan

Drosophila melanogaster recently spread from its tropical origin in Africa and became a cosmopolitan species that has adapted to a wide range of different thermal environments, including temperate climates. An important limiting factor of temperate climates has probably been their low and varying temperatures. The transcriptional output of genes can vary across temperatures, which might have been detrimental while settling in temperate environments. The reduction of temperature-sensitive expression of functionally important genes to ensure consistent levels of gene expression might have been relevant while adapting to such environments. In this study, we focus on the gene vestigial (vg) whose product is a key factor in wing development. We provide evidence that temperature-sensitivity of vg has been buffered in populations from temperate climates. We investigated temperature-sensitivity of vg gene expression in six natural populations, including four temperate populations (three from Europe and one from high-altitude Africa), and two tropical populations from the ancestral species range. All temperate populations exhibited a lower degree of temperature-induced expression plasticity than the tropical populations.

2003 ◽  
Vol 23 (20) ◽  
pp. 7403-7414 ◽  
Author(s):  
Matthias Gautschi ◽  
Sören Just ◽  
Andrej Mun ◽  
Suzanne Ross ◽  
Peter Rücknagel ◽  
...  

ABSTRACT The majority of cytosolic proteins in eukaryotes contain a covalently linked acetyl moiety at their very N terminus. The mechanism by which the acetyl moiety is efficiently transferred to a large variety of nascent polypeptides is currently only poorly understood. Yeast Nα -acetyltransferase NatA, consisting of the known subunits Nat1p and the catalytically active Ard1p, recognizes a wide range of sequences and is thought to act cotranslationally. We found that NatA was quantitatively bound to ribosomes via Nat1p and contained a previously unrecognized third subunit, the Nα -acetyltransferase homologue Nat5p. Nat1p not only anchored Ard1p and Nat5p to the ribosome but also was in close proximity to nascent polypeptides, independent of whether they were substrates for Nα -acetylation or not. Besides Nat1p, NAC (nascent polypeptide-associated complex) and the Hsp70 homologue Ssb1/2p interact with a variety of nascent polypeptides on the yeast ribosome. A direct comparison revealed that Nat1p required longer nascent polypeptides for interaction than NAC and Ssb1/2p. Δnat1 or Δard1 deletion strains were temperature sensitive and showed derepression of silent mating type loci while Δnat5 did not display any obvious phenotype. Temperature sensitivity and derepression of silent mating type loci caused by Δnat1 or Δard1 were partially suppressed by overexpression of SSB1. The combination of data suggests that Nat1p presents the N termini of nascent polypeptides for acetylation and might serve additional roles during protein synthesis.


1999 ◽  
Vol 74 (2) ◽  
pp. 121-128 ◽  
Author(s):  
J. ROBBINS ◽  
R. AGGARWAL ◽  
R. NICHOLS ◽  
G. GIBSON

Heart rate in pre-pupae of Drosophila melanogaster is shown to vary over a wide range from 2·5 to 3·7 beats per second. Quantitative genetic analysis of a sample of 11 highly inbred lines indicates that approaching one-quarter of the total variance in natural populations can be attributed to genetic differences between flies. A hypomorphic allele of the potassium channel gene ether-a-gogo, which is homologous to a human long-QT syndrome susceptibility gene (HERG), has a heart rate at the low end of the wild-type range, but this effect can be suppressed in certain wild-type genetic backgrounds. This study provides a baseline for investigation of pharmacological and other physiological influences on heart rate in the model organism, and implies that quantitative genetic dissection will provide insight into the molecular basis for variation in normal and arrhythmic heart function.


2020 ◽  
Vol 12 (12) ◽  
pp. 2429-2440
Author(s):  
Francois Mallard ◽  
Viola Nolte ◽  
Christian Schlötterer

Abstract Phenotypic plasticity is the ability of a single genotype to produce different phenotypes in response to environmental variation. The importance of phenotypic plasticity in natural populations and its contribution to phenotypic evolution during rapid environmental change is widely debated. Here, we show that thermal plasticity of gene expression in natural populations is a key component of its adaptation: evolution to novel thermal environments increases ancestral plasticity rather than mean genetic expression. We determined the evolution of plasticity in gene expression by conducting laboratory natural selection on a Drosophila simulans population in hot and cold environments. After more than 60 generations in the hot environment, 325 genes evolved a change in plasticity relative to the natural ancestral population. Plasticity increased in 75% of these genes, which were strongly enriched for several well-defined functional categories (e.g., chitin metabolism, glycolysis, and oxidative phosphorylation). Furthermore, we show that plasticity in gene expression of populations exposed to different temperatures is rather similar across species. We conclude that most of the ancestral plasticity can evolve further in more extreme environments.


Author(s):  
Susanne Voigt ◽  
Luise Kost

Asbstract Environmental temperature can affect chromatin-based gene regulation, in particular in ectotherms such as insects. Genes regulated by the Polycomb group (PcG) vary in their transcriptional output in response to changes in temperature. Expression of PcG-regulated genes typically increases with decreasing temperatures. Here we examined variations in temperature-sensitive expression of PcG target genes in natural populations from different climates of Drosophila melanogaster, and differences thereof across different fly stages and tissues. Temperature-induced expression plasticity was found to be stage- and sex-specific with differences in the specificity between the examined PcG target genes. Some tissues and stages, however, showed a higher number of PcG target genes with temperature-sensitive expression than others. Overall, we found higher levels of temperature-induced expression plasticity in African tropical flies from the ancestral species range than in flies from temperate Europe. We also observed differences between temperate flies, however, with more reduction of expression plasticity in warm-temperate than in cold-temperate populations. Although, in general, temperature sensitive expression appeared to be detrimental in temperate climates, there were also cases in which plasticity was increased in temperate flies, as well as no changes in expression plasticity between flies from different climates.


2022 ◽  
Author(s):  
Yuheng Huang ◽  
Justin Lack ◽  
Grant Hoppel ◽  
John E Pool

The relationships between adaptive evolution, phenotypic plasticity, and canalization remain incompletely understood. Theoretical and empirical studies have made conflicting arguments on whether adaptive evolution may enhance or oppose the plastic response. Gene regulatory traits offer excellent potential to study the relationship between plasticity and adaptation, and they can now be studied at the transcriptomic level. Here we take advantage of three closely-related pairs of natural populations of Drosophila melanogaster from contrasting thermal environments that reflect three separate instances of cold tolerance evolution. We measure the transcriptome-wide plasticity in gene expression levels and alternative splicing (intron usage) between warm and cold laboratory environments. We find that suspected adaptive changes in both gene expression and alternative splicing tend to neutralize the ancestral plastic response. Further, we investigate the hypothesis that adaptive evolution can lead to decanalization of selected gene regulatory traits. We find strong evidence that suspected adaptive gene expression (but not splicing) changes in cold-adapted populations are more vulnerable to the genetic perturbation of inbreeding than putatively neutral changes. We find some evidence that these patterns may reflect a loss of genetic canalization accompanying adaptation, although other processes including hitchhiking recessive deleterious variants may contribute as well. Our findings augment our understanding of genetic and environmental effects on gene regulation in the context of adaptive evolution.


1974 ◽  
Vol 16 (4) ◽  
pp. 713-735 ◽  
Author(s):  
David T. Suzuki

In screening Drosophila melanogaster for mutations which cause paralysis at 29cC and recovery of mobility at 22cC, 11 temperature-sensitive (ts) mutants were detected among 1.35 × 106 flies screened. These mutations fell into 3 loci, paralytic (parats), shibire (shits) and stoned (stnts). All three loci affect neurological development. The best explanation for parats appears to be an effect on the inhibitory neuronal system. The shi alleles affect an array of developmental events from early embryos to adults. The pattern of heat-induced changes in shits1 electroretinograms (ERG) is consistent with a ts membranal defect. This is supported by a ts resistance of shits flies to tetrodotoxin which specifically blocks the sodium channel of nerves.The final locus, stn, causes sensitivity to the trauma of temperature changes. A jump response observed when a light is turned off is related to a large "offtransient" in ERGs which is correlated with a simultaneous muscle spike. The property of temperature-sensitivity allows greater analytic powers in the study of neurological mutants.


2002 ◽  
Vol 76 (2) ◽  
pp. 525-531 ◽  
Author(s):  
Kathryn A. Hanley ◽  
Jay J. Lee ◽  
Joseph E. Blaney ◽  
Brian R. Murphy ◽  
Stephen S. Whitehead

ABSTRACT Charge-to-alanine mutagenesis of dengue virus type 4 (DEN4) NS5 gene generated a collection of attenuating mutations for potential use in a recombinant live attenuated DEN vaccine. Codons for 80 contiguous pairs of charged amino acids in NS5 were individually mutagenized to create uncharged pairs of alanine residues, and 32 recombinant mutant viruses were recovered from the 80 full-length mutant DEN4 cDNA constructs. These mutant viruses were tested for temperature-sensitive (ts) replication in both Vero cells and HuH-7 human hepatoma cells. Of the 32 mutants, 13 were temperature sensitive (ts) in both cell lines, 11 were not ts in either cell line, and 8 exhibited a host range (tshr) phenotype. One tshr mutant was ts only in Vero cells, and seven were ts only in HuH-7 cells. Nineteen of the 32 mutants were 10-fold or more restricted in replication in the brains of suckling mice compared to that of wild-type DEN4, and three mutants were approximately 10,000-fold restricted in replication. The level of temperature sensitivity of replication in vitro did not correlate with attenuation in vivo. A virus bearing two pairs of charge-to-alanine mutations was constructed and demonstrated increased temperature sensitivity and attenuation relative to either parent virus. This large set of charge-to-alanine mutations specifying a wide range of attenuation for mouse brain should prove useful in fine-tuning recombinant live attenuated DEN vaccines.


Genetics ◽  
1986 ◽  
Vol 112 (2) ◽  
pp. 217-228
Author(s):  
Mary E Stevens ◽  
Peter J Bryant

ABSTRACT Mutations at the apterous (ap) locus in Drosophila melanogaster produce a variety of developmental defects, including several classes of wing abnormalities. We describe the wing phenotype produced by homozygotes and hemizygotes of three different temperature-sensitive apterous alleles grown at 16, 18, 20, 22, 25, and 29°. We also describe the phenotype produced by each of these three alleles when heteroallelic with the non-temperature-sensitive apc allele. Constant-temperature and temperature-shift experiments show that each of the heteroallelic genotypes can produce several of the previously described apterous phenotypes and that the length of the temperature-sensitive period for a given phenotype depends on the allelic combinations used to measure it. We suggest that the stage-specific requirements of the tissue for gene product, rather than the time of gene expression per se, determine the temperature-sensitive periods for apterous and other loci. The results support the hypothesis that the various wing phenotypes produced by apterous mutations are due to quantitative reductions in the activity of gene product and that failure to meet specific threshold requirements for gene product can lead to qualitatively different phenotypes.


Genetics ◽  
1994 ◽  
Vol 136 (1) ◽  
pp. 195-207
Author(s):  
M A Pultz ◽  
G S Carson ◽  
B S Baker

Abstract Sex determination in Drosophila is controlled by a cascade of regulatory genes. Here we describe hermaphrodite (her), a new component of this regulatory cascade with pleiotropic zygotic and maternal functions. Zygotically, her+ function is required for female sexual differentiation: when zygotic her+ function is lacking, females are transformed to intersexes. Zygotic her+ function may also play a role in male sexual differentiation. Maternally, her+ function is needed to ensure the viability of female progeny: a partial loss of her+ function preferentially kills daughters. In addition, her has both zygotic and maternal functions required for viability in both sexes. Temperature sensitivity prevails for all known her alleles and for all of the her phenotypes described above, suggesting that her may participate in an intrinsically temperature-sensitive process. This analysis of four her alleles also indicates that the zygotic and maternal components of of her function are differentially mutable. We have localized her cytologically to 36A3-36A11.


Sign in / Sign up

Export Citation Format

Share Document